首页> 美国卫生研究院文献>Frontiers in Neural Circuits >Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action
【2h】

Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action

机译:通过行为行为塑造视觉输入的动态可以促进昆虫的空间视觉

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects, or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioral actions to actively shape the dynamics of the image flow on their eyes (“optic flow”). The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioral contexts by making optimal use of the closed action–perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor.
机译:具有微型大脑的昆虫(如苍蝇或蜜蜂)能够控制高度的特技飞行动作并解决空间视觉任务,例如避免与障碍物碰撞,降落在物体上,或者甚至基于以下知识定位先前学习的不起眼的目标环境提示。关于解决这样的空间任务,这些昆虫仍然胜过人造的自主飞行系统。为了实现其非凡的性能,果蝇和蜜蜂以其独特的行为举止表现出来,从而积极塑造了他们眼睛上图像流(“光流”)的动态。通过绕行视线飞行和注视策略将旋转运动与平移光学流分量隔离开来,极大地促进了有关环境空间布局信息的神经处理。因此,这种主动视觉策略使神经系统能够以特别有效和简约的方式解决表面上复杂的空间视觉任务。这篇综述的关键思想是,诸如苍蝇或蜜蜂之类的生物制剂通过与周围环境的积极互动,而不是简单地处理被动获取的有关世界的信息,而获得了其至少一部分作为自主系统的力量。这些代理人与环境之间的相互作用会导致各种复杂环境中的适应性行为。即使是大脑很小的动物,例如昆虫,也可以通过最佳利用封闭的行动感知回路,在其行为环境中表现出色。模型仿真和机器人实现表明,运动计算和视觉引导飞行控制的智能生物机制可能有助于找到技术解决方案,例如,在设计搭载小型化,轻型机载处理器的微型飞行器时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号