首页> 美国卫生研究院文献>Frontiers in Neural Circuits >Particle Tracking Facilitates Real Time Capable Motion Correction in 2D or 3D Two-Photon Imaging of Neuronal Activity
【2h】

Particle Tracking Facilitates Real Time Capable Motion Correction in 2D or 3D Two-Photon Imaging of Neuronal Activity

机译:粒子跟踪有助于神经元活动的2D或3D双光子成像中的实时功能性运动校正

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The application of 2-photon laser scanning microscopy (TPLSM) techniques to measure the dynamics of cellular calcium signals in populations of neurons is an extremely powerful technique for characterizing neural activity within the central nervous system. The use of TPLSM on awake and behaving subjects promises new insights into how neural circuit elements cooperatively interact to form sensory perceptions and generate behavior. A major challenge in imaging such preparations is unavoidable animal and tissue movement, which leads to shifts in the imaging location (jitter). The presence of image motion can lead to artifacts, especially since quantification of TPLSM images involves analysis of fluctuations in fluorescence intensities for each neuron, determined from small regions of interest (ROIs). Here, we validate a new motion correction approach to compensate for motion of TPLSM images in the superficial layers of auditory cortex of awake mice. We use a nominally uniform fluorescent signal as a secondary signal to complement the dynamic signals from genetically encoded calcium indicators. We tested motion correction for single plane time lapse imaging as well as multiplane (i.e., volume) time lapse imaging of cortical tissue. Our procedure of motion correction relies on locating the brightest neurons and tracking their positions over time using established techniques of particle finding and tracking. We show that our tracking based approach provides subpixel resolution without compromising speed. Unlike most established methods, our algorithm also captures deformations of the field of view and thus can compensate e.g., for rotations. Object tracking based motion correction thus offers an alternative approach for motion correction, one that is well suited for real time spike inference analysis and feedback control, and for correcting for tissue distortions.
机译:2光子激光扫描显微镜(TPLSM)技术在测量神经元群体中细胞钙信号动态方面的应用是表征中枢神经系统内神经活动的极为强大的技术。将TPLSM用于清醒和举止行为的受试者有望为神经回路元件如何协同相互作用以形成感官知觉并产生行为提供新的见解。对此类制剂进行成像的主要挑战是不可避免的动物和组织运动,这会导致成像位置发生变化(抖动)。图像运动的存在会导致伪影,特别是因为TPLSM图像的量化涉及对每个神经元的荧光强度波动的分析,该波动是根据关注的小区域(ROI)确定的。在这里,我们验证了一种新的运动校正方法,以补偿清醒小鼠听觉皮层表层TPLSM图像的运动。我们使用名义上均匀的荧光信号作为辅助信号,以补充来自遗传编码钙指示剂的动态信号。我们测试了皮质组织的单平面延时成像以及多平面(即体积)延时成像的运动校正。我们的运动校正程序依赖于使用已建立的粒子发现和跟踪技术,找到最亮的神经元并随时间跟踪其位置。我们证明了基于跟踪的方法可以提供亚像素分辨率而不会影响速度。与大多数已建立的方法不同,我们的算法还捕获了视场的变形,因此可以补偿例如旋转。因此,基于对象跟踪的运动校正为运动校正提供了另一种方法,该方法非常适合于实时峰值推断分析和反馈控制以及组织变形的校正。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号