首页> 美国卫生研究院文献>Frontiers in Neural Circuits >A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control
【2h】

A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

机译:现实的小脑双半球模型揭示了运动控制过程中大量颗粒细胞的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).
机译:已提出小脑颗粒细胞(GC)对下游小脑电路所需的传入感觉/运动信息进行无损,自适应的时空编码,以支持运动学习,运动协调和认知。在这里,我们使用生理解剖学启发的双半球小脑神经元网络(biCNN)选择性地启用/禁用GC的输出,并评估三种不同控制场景下的行为和神经后果。控制方案包括一个简单的直流电动机(1个自由度:DOF),一个不稳定的两轮平衡机器人(2个DOF)和一个四轴飞行器的仿真模型(6个DOF)。结果表明,在所有控制场景中,使用相对较少的GC(<200)就可以保持足够的控制。但是,成功控制每个控制工厂所需的最小数量的GC随其复杂性(即DOF)而增加。还显示出,增加GC的数量导致针对biCNN模型的初始化参数(即,突触连接和突触权重)的改变具有更高的鲁棒性。因此,我们建议,小脑皮层中大量的GC可提供大量的运动活动和小脑所涉及的运动植物,从而为小脑微电路的变化(例如,神经元连接)带来强大的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号