首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot
【2h】

Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot

机译:人为干扰估算和补偿(DEC)方法使其适用于人形机器人中的模块化感觉运动控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking.
机译:人体姿势和运动控制系统的高度复杂性为神经病患者的诊断,治疗和康复提出了挑战。我们设想基于工程的,基于模型的方法将有助于应对人体姿势控制系统的高度复杂性。由于系统识别和参数估计的方法仅限于只有几个自由度的系统,因此我们的实验室提出了一种启发式方法,当在类人机器人中创建虚拟的人为控制系统时,逐步增加复杂性。然后将该系统与人为控制在同一测试台(姿势控制实验室)中进行比较。人为控制是建立在确定的干扰估计和补偿(DEC)机制的基础上的,该机制的主要原理是通过补偿外部或自身产生的干扰(例如重力效应)来支持执行命令的姿势或运动。在以前的机器人实施中,模块化控制体系结构中多达3个相互连接的DEC控制模块分别用于矢状平面或前躯体平面,并成功通过了平衡和运动测试。在本研究中,我们假设机器人的矢状面和额体平面之间的无冲突运动协调仅是从物理实施方式中得出的,而不一定需要全面的身体控制。在14自由度机器人Lucy Posturob中进行了实验(i)表明,当机器人在中间平面产生运动并平衡响应时,来自机器人身体的机械耦合足以协调两个平面中的控件,(ii)进行定量表征用于人体姿势控制分析的包括频率响应函数(FRF)在内的人体平面之间的相互作用动力学;以及(iii)当所有自由度都受到挑战时,见证蹲姿的姿势和控制稳定性,并且在蹲位时出现段间协调动作。这些发现代表了在未来控制更复杂的感觉运动功能(如步行)时控制机器人的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号