首页> 美国卫生研究院文献>Frontiers in Neurorobotics >An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury
【2h】

An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury

机译:辅助下肢外骨骼的自适应神经肌肉控制器:脊髓损伤的受试者的初步研究。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limb muscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection), can be decomposed into relevant control modules (e.g., only knee or hip control), and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects (N = 7, four with complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects—from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged for most of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined settings for multiple walking speeds or adjustments for subjects of differing anthropometry and walking ability, NMC enabled SCI subjects to walk at several speeds, including near healthy speeds, in a healthy-like manner. These preliminary results are promising for future implementation of neuromuscular controllers on wearable prototypes for real-world walking conditions.
机译:多功能性对于可穿戴式外骨骼控制器对用户和环境的响应都很重要。这些特征对于患有脊髓损伤(SCI)的受试者尤其重要,在脊髓损伤中,主动募集自己的神经肌肉系统可以促进运动恢复。在这里,我们演示了一种新颖的,具有生物启发性的神经肌肉控制器(NMC)的功能,该控制器使用下肢肌肉的动力学模型来帮助SCI受试者的步态。该控制器的优势包括坚固性,模块化和适应性。控制器需要很少的输入(即关节角度,姿势和摆动检测),可以分解为相关的控制模块(例如仅膝盖或臀部控制),并且可以在模拟中以不同的速度和地形产生步行。我们在下肢膝盖和髋部机器人步态训练器上对这名控制器进行了初步评估,该教练员有7名受试者(N = 7,其中四名患有完全性截瘫,两名不完全,一名健康),以确定NMC是否可以使人正常行走。在实验过程中,SCI受试者在跑步机上靠体重支撑行走,并且可以使用扶手。在管制员的协助下,受试者能够以非固定SCI受试者的快速行走速度行走-从0.6到1.4 m / s。测得的关节角度和NMC提供的关节扭矩与健康受试者进行手走路时的运动学和生物关节扭矩相当吻合。在扭矩之间发现了一些差异,例如在中间姿势附近没有膝盖弯曲,但是关节角度轨迹似乎并未受到很大的影响。 NMC还调整了其扭矩输出,以更快的速度提供更多的接头工作,从而提供更大的接头角度和步长。我们还发现,对于大多数受试者来说,出现了在健康人中观察到的最佳速度步长曲线,尽管在更快的速度下步长相对较长。因此,NMC几乎没有传感器,没有针对多种步行速度的预定义设置,也没有针对不同人体测量学和步行能力的受试者进行调整的功能,因此NCI使SCI受试者能够以多种速度(包括接近健康的速度)以健康的方式行走。这些初步结果对于在现实世界中行走条件下的可穿戴原型上实现神经肌肉控制器的未来很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号