首页> 美国卫生研究院文献>Frontiers in Neurorobotics >The hierarchical and functional connectivity of higher-order cognitive mechanisms: neurorobotic model to investigate the stability and flexibility of working memory
【2h】

The hierarchical and functional connectivity of higher-order cognitive mechanisms: neurorobotic model to investigate the stability and flexibility of working memory

机译:高阶认知机制的层次和功能连通性:神经机器人模型用于研究工作记忆的稳定性和灵活性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Higher-order cognitive mechanisms (HOCM), such as planning, cognitive branching, switching, etc., are known to be the outcomes of a unique neural organizations and dynamics between various regions of the frontal lobe. Although some recent anatomical and neuroimaging studies have shed light on the architecture underlying the formation of such mechanisms, the neural dynamics and the pathways in and between the frontal lobe to form and/or to tune the stability level of its working memory remain controversial. A model to clarify this aspect is therefore required. In this study, we propose a simple neurocomputational model that suggests the basic concept of how HOCM, including the cognitive branching and switching in particular, may mechanistically emerge from time-based neural interactions. The proposed model is constructed such that its functional and structural hierarchy mimics, to a certain degree, the biological hierarchy that is believed to exist between local regions in the frontal lobe. Thus, the hierarchy is attained not only by the force of the layout architecture of the neural connections but also through distinct types of neurons, each with different time properties. To validate the model, cognitive branching and switching tasks were simulated in a physical humanoid robot driven by the model. Results reveal that separation between the lower and the higher-level neurons in such a model is an essential factor to form an appropriate working memory to handle cognitive branching and switching. The analyses of the obtained result also illustrates that the breadth of this separation is important to determine the characteristics of the resulting memory, either static memory or dynamic memory. This work can be considered as a joint research between synthetic and empirical studies, which can open an alternative research area for better understanding of brain mechanisms.
机译:诸如计划,认知分支,转换等高阶认知机制(HOCM)是已知的独特神经组织和额叶各个区域之间动态的结果。尽管最近的一些解剖学和神经影像学研究揭示了这种机制形成的基础,但神经动力学以及额叶内部和之间形成和/或调节其工作记忆稳定性水平的途径仍存在争议。因此,需要一个模型来阐明这一方面。在这项研究中,我们提出了一个简单的神经计算模型,该模型提出了HOCM(尤其是认知分支和转换)如何从基于时间的神经交互作用中机械地出现的基本概念。构造提出的模型,使得其功能和结构层次在某种程度上模仿了额叶局部区域之间存在的生物学层次。因此,不仅通过神经连接的布局结构的力量,而且通过不同类型的神经元(每个神经元具有不同的时间属性)来获得层次结构。为了验证该模型,在由模型驱动的物理人形机器人中模拟了认知分支和切换任务。结果表明,在这种模型中,较低层和较高层神经元之间的分离是形成适当的工作记忆以处理认知分支和转换的重要因素。对所获得结果的分析还表明,这种分离的广度对于确定最终存储器(静态存储器或动态存储器)的特性很重要。这项工作可以被认为是综合研究与实证研究之间的联合研究,可以为更好地理解大脑机制开辟一个替代研究领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号