首页> 美国卫生研究院文献>Frontiers in Neurology >Impact of Neuronal Membrane Damage on the Local Field Potential in a Large-Scale Simulation of Cerebral Cortex
【2h】

Impact of Neuronal Membrane Damage on the Local Field Potential in a Large-Scale Simulation of Cerebral Cortex

机译:大面积模拟大脑皮层中神经元膜损伤对局部场电位的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Within multiscale brain dynamics, the structure–function relationship between cellular changes at a lower scale and coordinated oscillations at a higher scale is not well understood. This relationship may be particularly relevant for understanding functional impairments after a mild traumatic brain injury (mTBI) when current neuroimaging methods do not reveal morphological changes to the brain common in moderate to severe TBI such as diffuse axonal injury or gray matter lesions. Here, we created a physiology-based model of cerebral cortex using a publicly released modeling framework (GEneral NEural SImulation System) to explore the possibility that performance deficits characteristic of blast-induced mTBI may reflect dysfunctional, local network activity influenced by microscale neuronal damage at the cellular level. We operationalized microscale damage to neurons as the formation of pores on the neuronal membrane based on research using blast paradigms, and in our model, pores were simulated by a change in membrane conductance. We then tracked changes in simulated electrical activity. Our model contained 585 simulated neurons, comprised of 14 types of cortical and thalamic neurons each with its own compartmental morphology and electrophysiological properties. Comparing the functional activity of neurons before and after simulated damage, we found that simulated pores in the membrane reduced both action potential generation and local field potential (LFP) power in the 1–40 Hz range of the power spectrum. Furthermore, the location of damage modulated the strength of these effects: pore formation on simulated axons reduced LFP power more strongly than did pore formation on the soma and the dendrites. These results indicate that even small amounts of cellular damage can negatively impact functional activity of larger scale oscillations, and our findings suggest that multiscale modeling provides a promising avenue to elucidate these relationships.
机译:在多尺度的脑动力学中,人们对低水平的细胞变化与高水平的协调振荡之间的结构-功能关系尚不甚了解。当当前的神经影像学方法不能揭示中度至重度TBI常见的大脑形态变化(如弥漫性轴突损伤或灰质病变)时,这种关系对于理解轻度颅脑损伤(mTBI)后的功能障碍尤其有用。在这里,我们使用公开发布的建模框架(通用神经模拟系统)创建了基于生理学的大脑皮层模型,以探索爆炸诱导的mTBI的功能缺陷可能反映功能障碍,局部网络活动受到微观神经元损伤影响的可能性。细胞水平。根据使用爆炸范式的研究,我们将神经元的微小损伤作为神经元膜上孔的形成进行操作,在我们的模型中,通过膜电导的变化模拟孔。然后,我们跟踪了模拟电活动的变化。我们的模型包含585个模拟神经元,包括14种类型的皮质和丘脑神经元,每种神经元都有自己的区室形态和电生理特性。比较模拟损伤前后神经元的功能活性,我们发现膜中的模拟孔在功率谱的1–40 Hz范围内减少了动作电位的产生和局部场电位(LFP)的能量。此外,损伤的位置调节了这些作用的强度:在模拟轴突上形成孔比在体细胞和树突上形成孔更能降低LFP能量。这些结果表明,即使是少量的细胞损伤也会对大规模振荡的功能活动产生负面影响,并且我们的发现表明,多尺度建模为阐明这些关系提供了一个有希望的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号