首页> 美国卫生研究院文献>Frontiers in Neuroscience >Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning
【2h】

Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning

机译:尖峰网络中的模拟忆阻突触实现无监督学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e., the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy images are displayed and it is robust to a device-to-device variability of up to ±30%.
机译:新兴的以大脑为灵感的体系结构需要能够模拟生物突触功能的设备,以便实施能够解决不适定问题的新型高效计算方案。各种设备和解决方案仍在研究中,在这方面,该领域的研究人员面临挑战。实际上,最佳候选者是能够再现突触的完整功能的装置,即,生物学系统中基础学习的典型突触过程(依赖于活性的突触可塑性)。这意味着器件能够在适当的电刺激(突触活动)后改变其电阻(突触强度或重量),并在其动态范围内(模拟行为)显示出几种稳定的电阻状态。此外,它应该能够执行尖峰时序相关可塑性(STDP),这是一种基于突触所连接的两个激发神经元之间的延迟时间的关联同型突触可塑性学习规则。该规则是最新网络中的基本学习协议,因为它允许无监督学习。尽管如此,基于STDP的无监督学习已经被提出了好几次,主要是针对二进制突触,而不是由许多二进制忆阻器组成的多级突触。本文提出了一种基于HfO2的模拟忆阻器作为突触元件,该突触元件在一个小的尖峰神经形态网络内执行STDP,该网络以无监督学习的方式进行字符识别。经过训练的网络即使在显示不完整或嘈杂的图像的情况下也能够识别五个字符,并且对于高达±30%的设备间差异具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号