首页> 美国卫生研究院文献>Frontiers in Neuroscience >Mitochondria-controlled signaling mechanisms of brain protection in hypoxia
【2h】

Mitochondria-controlled signaling mechanisms of brain protection in hypoxia

机译:缺氧时线粒体控制的脑保护信号传导机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The article is focused on the role of the cell bioenergetic apparatus, mitochondria, involved in development of immediate and delayed molecular mechanisms for adaptation to hypoxic stress in brain cortex. Hypoxia induces reprogramming of respiratory chain function and switching from oxidation of NAD-related substrates (complex I) to succinate oxidation (complex II). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of immediate adaptation to hypoxia necessary for (1) succinate-related energy synthesis in the conditions of oxygen deficiency and formation of urgent resistance in the body; (2) succinate-related stabilization of HIF-1α and initiation of its transcriptional activity related with formation of long-term adaptation; (3) succinate-related activation of the succinate-specific receptor, GPR91. This mechanism participates in at least four critical regulatory functions: (1) sensor function related with changes in kinetic properties of complex I and complex II in response to a gradual decrease in ambient oxygen concentration; this function is designed for selection of the most efficient pathway for energy substrate oxidation in hypoxia; (2) compensatory function focused on formation of immediate adaptive responses to hypoxia and hypoxic resistance of the body; (3) transcriptional function focused on activated synthesis of HIF-1 and the genes providing long-term adaptation to low pO2; (4) receptor function, which reflects participation of mitochondria in the intercellular signaling system via the succinate-dependent receptor, GPR91. In all cases, the desired result is achieved by activation of the succinate-dependent oxidation pathway, which allows considering succinate as a signaling molecule. Patterns of mitochondria-controlled activation of GPR-91- and HIF-1-dependent reaction were considered, and a possibility of their participation in cellular-intercellular-systemic interactions in hypoxia and adaptation was proved.
机译:这篇文章的重点是细胞生物能设备线粒体的作用,它参与了开发适应大脑皮层缺氧应激的即时和延迟分子机制。低氧诱导呼吸链功能的重新编程,并从NAD相关底物的氧化(复合体I)转变为琥珀酸氧化(复合体II)。呼吸链复合物II的瞬时,可逆,代偿性激活是立即适应缺氧的主要机制,这是(1)在缺氧和体内形成紧急抵抗的条件下,琥珀酸相关的能量合成所必需的; (2)与HIF-1α的琥珀酸酯有关的稳定化及其与长期适应形成有关的转录活性的启动; (3)琥珀酸相关的琥珀酸特异性受体GPR91的活化。该机制至少参与了四个关键的调节功能:(1)与复合物I和复合物II的动力学特性变化相关的传感器功能,以响应环境氧浓度的逐渐降低;此功能旨在选择缺氧状态下能量底物氧化的最有效途径; (2)补偿功能侧重于对机体缺氧和低氧抵抗的即时适应性反应的形成; (3)转录功能集中于HIF-1的活化合成以及对低pO2具有长期适应性的基因。 (4)受体功能,其反映了线粒体通过琥珀酸依赖性受体GPR91参与细胞间信号传导系统。在所有情况下,都可以通过激活琥珀酸依赖性的氧化途径来获得所需的结果,从而可以将琥珀酸视为信号分子。考虑了线粒体控制的GPR-91和HIF-1依赖反应的激活模式,并证明了它们参与缺氧和适应性细胞间系统相互作用的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号