首页> 美国卫生研究院文献>Frontiers in Neuroscience >A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology
【2h】

A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology

机译:采用65 nm CMOS技术的4-fJ / Spike人工神经元

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As Moore's law reaches its end, traditional computing technology based on the Von Neumann architecture is facing fundamental limits. Among them is poor energy efficiency. This situation motivates the investigation of different processing information paradigms, such as the use of spiking neural networks (SNNs), which also introduce cognitive characteristics. As applications at very high scale are addressed, the energy dissipation needs to be minimized. This effort starts from the neuron cell. In this context, this paper presents the design of an original artificial neuron, in standard 65 nm CMOS technology with optimized energy efficiency. The neuron circuit response is designed as an approximation of the Morris-Lecar theoretical model. In order to implement the non-linear gating variables, which control the ionic channel currents, transistors operating in deep subthreshold are employed. Two different circuit variants describing the neuron model equations have been developed. The first one features spike characteristics, which correlate well with a biological neuron model. The second one is a simplification of the first, designed to exhibit higher spiking frequencies, targeting large scale bio-inspired information processing applications. The most important feature of the fabricated circuits is the energy efficiency of a few femtojoules per spike, which improves prior state-of-the-art by two to three orders of magnitude. This performance is achieved by minimizing two key parameters: the supply voltage and the related membrane capacitance. Meanwhile, the obtained standby power at a resting output does not exceed tens of picowatts. The two variants were sized to 200 and 35 μm2 with the latter reaching a spiking output frequency of 26 kHz. This performance level could address various contexts, such as highly integrated neuro-processors for robotics, neuroscience or medical applications.
机译:随着摩尔定律的发展,基于冯·诺依曼体系结构的传统计算技术面临着根本性的局限。其中包括较差的能源效率。这种情况激发了对不同处理信息范式的研究,例如使用尖峰神经网络(SNN),这也引入了认知特征。随着大规模应用的发展,能量消耗需要最小化。这种努力始于神经元细胞。在此背景下,本文介绍了采用标准65 nm CMOS技术并具有最佳能效的原始人工神经元的设计。神经回路响应被设计为Morris-Lecar理论模型的近似值。为了实现控制离子通道电流的非线性门控变量,采用在深亚阈值下工作的晶体管。已经开发了描述神经元模型方程的两种不同的电路变体。第一个具有尖峰特征,该特征与生物神经元模型很好地相关。第二个是第一个的简化,旨在显示更高的峰值频率,以大规模的生物启发信息处理应用为目标。所制造电路的最重要特征是每个尖峰数毫微微焦耳的能量效率,这将现有技术水平提高了两个到三个数量级。通过最小化两个关键参数来实现此性能:电源电压和相关的膜电容。同时,在静止输出时获得的待机功率不超过数十皮瓦。两种型号的尺寸分别为200和35μm 2 ,后者的峰值输出频率为26 kHz。该性能水平可以解决各种情况,例如用于机器人技术,神经科学或医学应用的高度集成的神经处理器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号