首页> 美国卫生研究院文献>Frontiers in Physiology >An Analytical Framework for Studying Small-Number Effects in Catalytic Reaction Networks: A Probability Generating Function Approach to Chemical Master Equations
【2h】

An Analytical Framework for Studying Small-Number Effects in Catalytic Reaction Networks: A Probability Generating Function Approach to Chemical Master Equations

机译:研究催化反应网络中少量效应的分析框架:化学主方程的概率生成函数方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cell activities primarily depend on chemical reactions, especially those mediated by enzymes, and this has led to these activities being modeled as catalytic reaction networks. Although deterministic ordinary differential equations of concentrations (rate equations) have been widely used for modeling purposes in the field of systems biology, it has been pointed out that these catalytic reaction networks may behave in a way that is qualitatively different from such deterministic representation when the number of molecules for certain chemical species in the system is small. Apart from this, representing these phenomena by simple binary (on/off) systems that omit the quantities would also not be feasible. As recent experiments have revealed the existence of rare chemical species in cells, the importance of being able to model potential small-number phenomena is being recognized. However, most preceding studies were based on numerical simulations, and theoretical frameworks to analyze these phenomena have not been sufficiently developed. Motivated by the small-number issue, this work aimed to develop an analytical framework for the chemical master equation describing the distributional behavior of catalytic reaction networks. For simplicity, we considered networks consisting of two-body catalytic reactions. We used the probability generating function method to obtain the steady-state solutions of the chemical master equation without specifying the parameters. We obtained the time evolution equations of the first- and second-order moments of concentrations, and the steady-state analytical solution of the chemical master equation under certain conditions. These results led to the rank conservation law, the connecting state to the winner-takes-all state, and analysis of 2-molecules M-species systems. A possible interpretation of the theoretical conclusion for actual biochemical pathways is also discussed.
机译:细胞活性主要取决于化学反应,尤其是酶介导的化学反应,这导致将这些活性建模为催化反应网络。尽管浓度确定性常微分方程(速率方程)已广泛用于系统生物学领域中的建模,但已指出,当催化反应网络发生反应时,这些催化反应网络的行为可能与这种确定性表示形式发生质性变化。系统中某些化学物种的分子数量很小。除此之外,用省略数量的简单二进制(开/关)系统表示这些现象也是不可行的。由于最近的实验表明细胞中存在稀有化学物质,因此人们认识到能够对潜在的少量现象进行建模的重要性。但是,大多数先前的研究都是基于数值模拟的,并且尚未充分开发用于分析这些现象的理论框架。受数量少的问题的启发,这项工作旨在为化学主方程式建立一个描述催化反应网络分布行为的分析框架。为简单起见,我们考虑了由两体催化反应组成的网络。我们使用概率生成函数方法来获得化学主方程的稳态解,而无需指定参数。我们获得了浓度的一阶和二阶矩的时间演化方程,以及在某些条件下化学主方程的稳态解析解。这些结果导致了等级守恒定律,连接状态与获胜者通吃状态以及对2分子M物种系统的分析。还讨论了对实际生化途径的理论结论的可能解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号