首页> 美国卫生研究院文献>G3: GenesGenomesGenetics >Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures
【2h】

Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures

机译:具有加性和上位性遗传结构的性状基因组选择的参数和非参数统计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE.
机译:为了预测表型,已经开发了参数和非参数方法。这些方法基于对由基因型和表型评分组成的经验数据的回顾性分析。最近的报道表明,参数方法无法用已知的上位遗传结构预测性状的表型。本文中,我们回顾了参数方法,包括最小二乘回归,岭回归,贝叶斯岭回归,最小绝对收缩和选择算子(LASSO),贝叶斯LASSO,最佳线性无偏预测(BLUP),贝叶斯A,贝叶斯B,贝叶斯C和贝叶斯Cπ。我们还将回顾非参数方法,包括Nadaraya-Watson估计器,再现内核希尔伯特空间,支持向量机回归和神经网络。我们使用由自交系杂交衍生的F2群体中完全累加或双向上位相互作用组成的模拟遗传结构,评估了这14种方法在准确性和均方误差(MSE)方面的相对优势。每个模拟的遗传结构都解释了30%或70%的表型变异性。对准确性和MSE估计的最大影响是基因结构。当潜在的遗传结构完全基于上位性时,参数方法无法预测表型值。对于加性遗传结构,参数方法比非参数方法要好一些。可加遗传结构的参数方法之间的区别是递增的。遗传性,即表型变异性的比例,对准确性和MSE估计的影响第二大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号