首页> 美国卫生研究院文献>Heredity >Genetic architecture of adaptation to novel environmental conditions in a predominantly selfing allopolyploid plant
【2h】

Genetic architecture of adaptation to novel environmental conditions in a predominantly selfing allopolyploid plant

机译:主要自交异源多倍体植物适应新环境条件的遗传结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genetic architecture of adaptation is traditionally studied in the context of local adaptation, viz. spatially varying conditions experienced by the species. However, anthropogenic changes in the natural environment pose a new context to this issue, that is, adaptation to an environment that is new for the species. In this study, we used crossbreeding to analyze genetic architecture of adaptation to conditions not currently experienced by the species but with high probability of encounter in the near future due to global climate change. We performed targeted interpopulation crossing using genotypes from two core and two peripheral Triticum dicoccoides populations and raised the parents and three generations of hybrids in a greenhouse under simulated desert conditions to analyze the genetic architecture of adaptation to these conditions and an effect of gene flow from plants having different origin. The hybrid (F1) fitness did not differ from that of the parents in crosses where both plants originated from the species core, but in crosses involving one parent from the species core and another one from the species periphery the fitness of F1 was consistently higher than that of the periphery-originated parent. Plant fitness in the next two generations (F2 and F3) did not differ from the F1, suggesting that effects of epistatic interactions between recombining and segregating alleles of genes contributing to fitness were minor or absent. The observed low importance of epistatic gene interactions in allopolyploid T. dicoccoides and low probability of hybrid breakdown appear to be the result of permanent fixation of heterozygosity and lack of intergenomic recombination in this species. At the same time, predominant but not complete selfing combined with an advantage of bivalent pairing of homologous chromosomes appears to maintain high genetic variability in T. dicoccoides, greatly enhancing its adaptive ability.
机译:传统上在局部适应的背景下研究适应的遗传结构,即。该物种经历的空间变化条件。但是,自然环境中的人为变化为该问题提供了新的背景,即适应了该物种的新环境。在这项研究中,我们使用杂交研究来分析适应该物种当前未经历但由于全球气候变化而在不久的将来很可能遭遇的条件的遗传结构。我们使用来自两个核心和两个外围小麦草种群的基因型进行了有针对性的种群间杂交,并在模拟沙漠条件下在温室中培育了亲本和三代杂种,以分析适应这些条件的遗传结构以及植物基因流的影响有不同的起源杂种(F1)的适应度与父本的相似,在两种植物均起源于物种核心的杂交中,但是在涉及一个亲本从种质核心和另一种亲缘种从种子核心杂交的杂交中,F1的适应性始终高于来自外围的父代。在接下来的两个世代(F2和F3)中,植物适应性与F1并无差异,这表明对构成适应性的基因的重组和分离等位基因之间的上位相互作用的影响很小或不存在。观察到的异源多倍体T. dicoccoides中的上位基因相互作用的重要性低,以及杂交破坏的可能性低,这似乎是该物种永久固定杂合性和缺乏基因组重组的结果。同时,优势的但不完全的自交结合同源染色体的二价配对的优势似乎在二轮隐孢子虫中保持了高遗传变异性,极大地增强了其适应能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号