首页> 美国卫生研究院文献>Heredity >Centromere repositioning in mammals
【2h】

Centromere repositioning in mammals

机译:哺乳动物中着丝粒的重新定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The evolutionary history of chromosomes can be tracked by the comparative hybridization of large panels of bacterial artificial chromosome clones. This approach has disclosed an unprecedented phenomenon: ‘centromere repositioning', that is, the movement of the centromere along the chromosome without marker order variation. The occurrence of evolutionary new centromeres (ENCs) is relatively frequent. In macaque, for instance, 9 out of 20 autosomal centromeres are evolutionarily new; in donkey at least 5 such neocentromeres originated after divergence from the zebra, in less than 1 million years. Recently, orangutan chromosome 9, considered to be heterozygous for a complex rearrangement, was discovered to be an ENC. In humans, in addition to neocentromeres that arise in acentric fragments and result in clinical phenotypes, 8 centromere-repositioning events have been reported. These ‘real-time' repositioned centromere-seeding events provide clues to ENC birth and progression. In the present paper, we provide a review of the centromere repositioning. We add new data on the population genetics of the ENC of the orangutan, and describe for the first time an ENC on the X chromosome of squirrel monkeys. Next-generation sequencing technologies have started an unprecedented, flourishing period of rapid whole-genome sequencing. In this context, it is worth noting that these technologies, uncoupled from cytogenetics, would miss all the biological data on evolutionary centromere repositioning. Therefore, we can anticipate that classical and molecular cytogenetics will continue to have a crucial role in the identification of centromere movements. Indeed, all ENCs and human neocentromeres were found following classical and molecular cytogenetic investigations.
机译:染色体的进化历史可以通过大量细菌人工染色体克隆的比较杂交来追踪。这种方法揭示了一种前所未有的现象:“着丝粒重新定位”,即着丝粒沿着染色体的运动而没有标记顺序的变化。进化新着丝粒(ENC)的发生相对频繁。例如,在猕猴中,20个常染色体着丝粒中有9个在进化上是新的。在驴中,至少有5个这样的新着丝粒是在不到一百万年的时间里从斑马发散后起源的。最近,发现猩猩9号染色体被认为是复杂的重排杂合体,是ENC。在人类中,除了在中心性片段中出现并导致临床表型的新着丝粒外,还报​​道了8个着丝粒重定位事件。这些“实时”重新定位的着丝粒播种事件为ENC的发生和发展提供了线索。在本文中,我们提供了着丝粒重定位的综述。我们添加了有关猩猩ENC种群遗传学的新数据,并首次描述了松鼠X染色体上的ENC。下一代测序技术已经开始了快速,全基因组测序的空前繁荣时期。在这种情况下,值得注意的是,这些与细胞遗传学脱钩的技术将错过有关进化着丝粒重新定位的所有生物学数据。因此,我们可以预期,经典和分子细胞遗传学将继续在着丝粒运动的识别中发挥关键作用。确实,在经典和分子细胞遗传学研究之后,发现了所有ENC和人类新着丝粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号