首页> 美国卫生研究院文献>Horticulture Research >Integrated physiologic proteomic and metabolomic analyses of Malus halliana adaptation to saline–alkali stress
【2h】

Integrated physiologic proteomic and metabolomic analyses of Malus halliana adaptation to saline–alkali stress

机译:海棠对盐碱胁迫适应性的综合生理蛋白质组学和代谢组学分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Saline–alkali stress is a severely adverse abiotic stress limiting plant growth. Malus halliana Koehne is an apple rootstock that is tolerant to saline–alkali stress. To understand the molecular mechanisms underlying the tolerance of M. halliana to saline–alkali stress, an integrated metabolomic and proteomic approach was used to analyze the plant pathways involved in the stress response of the plant and its regulatory mechanisms. A total of 179 differentially expressed proteins (DEPs) and 140 differentially expressed metabolites (DEMs) were identified. We found that two metabolite-related enzymes (PPD and PAO) were associated with senescence and involved in porphyrin and chlorophyll metabolism; six photosynthesis proteins (PSAH2, PSAK, PSBO2, PSBP1, and PSBQ2) were significantly upregulated, especially PSBO2, and could act as regulators of photosystem II (PSII) repair. Sucrose, acting as a signaling molecule, directly mediated the accumulation of D-phenylalanine, tryptophan, and alkaloid (vindoline and ecgonine) and the expression of proteins related to aspartate and glutamate (ASP3, ASN1, NIT4, and GLN1−1). These responses play a central role in maintaining osmotic balance and removing reactive oxygen species (ROS). In addition, sucrose signaling induced flavonoid biosynthesis by activating the expression of CYP75B1 to regulate the homeostasis of ROS and promoted auxin signaling by activating the expression of T31B5_170 to enhance the resistance of M. halliana to saline–alkali stress. The decrease in peroxidase superfamily protein (PER) and ALDH2C4 during lignin synthesis further triggered a plant saline–alkali response. Overall, this study provides an important starting point for improving saline–alkali tolerance in M. halliana via genetic engineering.
机译:盐碱胁迫是严重不利于植物生长的非生物胁迫。海棠(Malus halliana Koehne)是一种耐盐碱胁迫的苹果砧木。为了了解海盐分枝杆菌对盐碱胁迫的耐受性的分子机制,采用了整合的代谢组学和蛋白质组学方法来分析参与植物胁迫反应的植物途径及其调控机制。总共鉴定出179种差异表达蛋白(DEP)和140种差异表达代谢物(DEM)。我们发现两种代谢物相关的酶(PPD和PAO)与衰老相关,并参与卟啉和叶绿素的代谢。六个光合作用蛋白(PSAH2,PSAK,PSBO2,PSBP1和PSBQ2)被显着上调,尤其是PSBO2,并且可以作为光系统II(PSII)修复的调节剂。蔗糖充当信号分子,直接介导D-苯丙氨酸,色氨酸和生物碱(长春碱和芽子碱)的积累以及天冬氨酸和谷氨酸相关蛋白(ASP3,ASN1,NIT4和GLN1-1)的表达。这些反应在维持渗透平衡和去除活性氧(ROS)方面起着核心作用。此外,蔗糖信号通过激活CYP75B1的表达来调节ROS的稳态,从而诱导类黄酮的生物合成,并通过激活T31B5_170的表达来增强海藻分枝杆菌对盐碱胁迫的抗性而促进生长素信号转导。木质素合成过程中过氧化物酶超家族蛋白(PER)和ALDH2C4的减少进一步引发了植物盐碱反应。总的来说,这项研究为通过基因工程提高哈氏沼虾的耐盐碱性提供了重要的起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号