首页> 美国卫生研究院文献>Materials >Electrochemical and Electronic Charge Transport Properties of Ni-Doped LiMn2O4 Spinel Obtained from Polyol-Mediated Synthesis
【2h】

Electrochemical and Electronic Charge Transport Properties of Ni-Doped LiMn2O4 Spinel Obtained from Polyol-Mediated Synthesis

机译:多元醇介导的合成Ni掺杂LiMn2O4尖晶石的电化学和电荷输运性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

LiNi0.5Mn1.5O4 (LNMO) spinel has been extensively investigated as one of the most promising high-voltage cathode candidates for lithium-ion batteries. The electrochemical performance of LNMO, especially its rate performance, seems to be governed by its crystallographic structure, which is strongly influenced by the preparation methods. Conventionally, LNMO materials are prepared via solid-state reactions, which typically lead to microscaled particles with only limited control over the particle size and morphology. In this work, we prepared Ni-doped LiMn2O4 (LMO) spinel via the polyol method. The cycling stability and rate capability of the synthesized material are found to be comparable to the ones reported in literature. Furthermore, its electronic charge transport properties were investigated by local electrical transport measurements on individual particles by means of a nanorobotics setup in a scanning electron microscope, as well as by performing DFT calculations. We found that the scarcity of Mn3+ in the LNMO leads to a significant decrease in electronic conductivity as compared to undoped LMO, which had no obvious effect on the rate capability of the two materials. Our results suggest that the rate capability of LNMO and LMO materials is not limited by the electronic conductivity of the fully lithiated materials.
机译:LiNi0.5Mn1.5O4(LNMO)尖晶石已被广泛研究为锂离子电池最有希望的高压阴极候选材料之一。 LNMO的电化学性能,尤其是其速率性能,似乎受其晶体结构的支配,而晶体结构受制备方法的影响很大。传统上,LNMO材料是通过固态反应制备的,通常会导致产生微米级颗粒,而对颗粒大小和形态的控制有限。在这项工作中,我们通过多元醇法制备了掺镍的LiMn2O4(LMO)尖晶石。发现合成材料的循环稳定性和速率能力与文献报道的相当。此外,通过在扫描电子显微镜中设置的纳米机器人,通过对单个粒子的局部电传输测量以及通过执行DFT计算,研究了其电荷传输特性。我们发现,与未掺杂的LMO相比,LNMO中Mn 3 + 的稀缺导致电子电导率显着降低,这对两种材料的倍率性能没有明显影响。我们的结果表明,LNMO和LMO材料的速率能力不受完全锂化材料的电子电导率的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号