首页> 美国卫生研究院文献>Materials >Optimal Design of the Cement Fly Ash and Slag Mixture in Ternary Blended Concrete Based on Gene Expression Programming and the Genetic Algorithm
【2h】

Optimal Design of the Cement Fly Ash and Slag Mixture in Ternary Blended Concrete Based on Gene Expression Programming and the Genetic Algorithm

机译:基于基因表达程序和遗传算法的三元混合混凝土水泥粉煤灰和矿渣混合料的优化设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Concrete producers and construction companies are interested in improving the sustainability of concrete, including reducing its CO2 emissions and the costs of materials while maintaining its mechanical properties, workability, and durability. In this study, we propose a simple approach to the optimal design of the fly ash and slag mixture in blended concrete that considers the carbon pricing, material cost, strength, workability, and carbonation durability. Firstly, the carbon pricing and the material cost are calculated based on the concrete mixture and unit prices. The total cost equals the sum of the material cost and the carbon pricing, and is set as the optimization’s objective function. Secondly, 25 various mixtures are used as a database of optimization. The database covered a wide range of strengths between 25 MPa and 55 MPa and a wide range of workability between 5 and 25 cm in slump. Gene expression programming is used to predict the concrete’s strength and slump. The ternary blended concrete’s carbonation depth is calculated using the efficiency factors of fly ash and slag. Thirdly, the genetic algorithm is used to find the optimal mixture under various constraints. We provide examples to illustrate the design of ternary blended concrete with different strength levels and environmental CO2 concentrations. The results show that, for a suburban region, carbonation durability is the controlling factor in terms of the design of the mixture when the design strength is less than 40.49 MPa, and the compressive strength is the controlling factor in the design of the mixture when the design strength is greater than 40.49 MPa. For an urban region, the critical strength for distinguishing carbonation durability control and strength control is 45.93 MPa. The total cost, material cost, and carbon pricing increase as the concrete’s strength increases.
机译:混凝土生产商和建筑公司对提高混凝土的可持续性感兴趣,包括减少其二氧化碳排放量和材料成本,同时保持其机械性能,可加工性和耐久性。在这项研究中,我们提出了一种简单的方法来优化掺混混凝土中粉煤灰和矿渣混合物的设计,该方法考虑了碳定价,材料成本,强度,可加工性和碳化耐久性。首先,根据混凝土混合物和单位价格计算碳定价和材料成本。总成本等于材料成本和碳定价的总和,并被设置为优化的目标函数。其次,将25种不同的混合物用作优化数据库。该数据库涵盖了介于25 MPa和55 MPa之间的各种强度以及坍落度介于5到25 cm之间的各种可加工性。基因表达程序用于预测混凝土的强度和坍落度。使用粉煤灰和矿渣的效率因子来计算三元混合混凝土的碳化深度。第三,采用遗传算法寻找各种约束条件下的最优混合。我们提供示例来说明具有不同强度水平和环境CO2浓度的三元混合混凝土的设计。结果表明,对于郊区而言,当设计强度小于40.49 MPa时,碳化耐久性是混合物设计的控制因素,而当设计强度小于40.49 MPa时,抗压强度是混合物设计的控制因素。设计强度大于40.49 MPa。对于城市地区,区分碳化耐久性控制和强度控制的临界强度为45.93 MPa。随着混凝土强度的提高,总成本,材料成本和碳定价也随之增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号