首页> 美国卫生研究院文献>Materials >Solid Oxide Electrochemical Systems: Material Degradation Processes and Novel Mitigation Approaches
【2h】

Solid Oxide Electrochemical Systems: Material Degradation Processes and Novel Mitigation Approaches

机译:固体氧化物电化学系统:材料降解过程和新型缓解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solid oxide electrochemical systems, such as solid oxide fuel cells (SOFC), solid oxide electrolysis cells (SOEC), and oxygen transport membranes (OTM) enable clean and reliable production of energy or fuel for a range of applications, including, but not limited to, residential, commercial, industrial, and grid-support. These systems utilize solid-state ceramic oxides which offer enhanced stability, fuel flexibility, and high energy conversion efficiency throughout operation. However, the nature of system conditions, such as high temperatures, complex redox atmosphere, and presence of volatile reactive species become taxing on solid oxide materials and limit their viability during long-term operation. Ongoing research efforts to identify the material corrosion and degradation phenomena, as well as discover possible mitigation techniques to extend material efficiency and longevity, is the current focus of the research and industrial community. In this review, degradation processes in select solid oxide electrochemical systems, system components, and comprising materials will be discussed. Overall degradation phenomena are presented and certain degradation mechanisms are discussed. State-of-the-art technologies to mitigate or minimize the above-mentioned degradation processes are presented.
机译:固态氧化物电化学系统,例如固态氧化物燃料电池(SOFC),固态氧化物电解电池(SOEC)和氧气传输膜(OTM),可为各种应用提供清洁可靠的能源或燃料生产,包括但不限于到住宅,商业,工业和电网支持。这些系统利用固态陶瓷氧化物,在整个运行过程中提供增强的稳定性,燃料灵活性和高能量转换效率。但是,系统条件的性质,例如高温,复杂的氧化还原气氛以及挥发性反应物的存在,对固体氧化物材料造成了负担,并限制了它们在长期运行期间的生存能力。正在进行的研究工作旨在确定材料的腐蚀和降解现象,以及发现可能的缓解技术以延长材料的效率和寿命,这是研究和工业界当前的重点。在这篇综述中,将讨论选择的固体氧化物电化学系统,系统组件以及包括材料在内的降解过程。提出了总体降解现象并讨论了某些降解机理。提出了减轻或最小化上述降解过程的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号