首页> 美国卫生研究院文献>Materials >AFM-Nano Manipulation of Plasmonic Molecules Used as Nano-Lens to Enhance Raman of Individual Nano-Objects
【2h】

AFM-Nano Manipulation of Plasmonic Molecules Used as Nano-Lens to Enhance Raman of Individual Nano-Objects

机译:AFM-纳米操纵等离子体分子作为纳米透镜以增强单个纳米物体的拉曼光谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper explores the enhancement of Raman signals using individual nano-plasmonic structures and demonstrates the possibility to obtain controlled gold plasmonic nanostructures by atomic force microscopy (AFM) manipulation under a confocal Raman device. By manipulating the gold nanoparticles (Nps) while monitoring them using a confocal microscope, it is possible to generate individual nano- structures, plasmonic molecules not accessible currently by lithography at these nanometer scales. This flexible approach allows us to tune plasmonic resonance of the nanostructures, to generate localized hot spots and to circumvent the effects of strong electric near field gradients intrinsic to Tip Enhanced Raman Spectroscopy (TERS) or Surface Enhanced Raman Spectroscopy (SERS) experiments. The inter Np distances and symmetry of the plasmonic molecules in interaction with other individual nano-objects control the resonance conditions of the assemblies and the enhancement of their Raman responses. This paper shows also how some plasmonic structures generate localized nanometric areas with high electric field magnitude without strong gradient. These last plasmonic molecules may be used as "nano-lenses" tunable in wavelength and able to enhance Raman signals of neighbored nano-object. The positioning of one individual probed nano-object in the spatial area defined by the nano-lens becomes then very non-restrictive, contrary to TERS experiments where the spacing distance between tip and sample is crucial. The experimental flexibility obtained in these approaches is illustrated here by the enhanced Raman scatterings of carbon nanotube.
机译:本文探讨了使用单个纳米等离激元结构增强拉曼信号,并证明了在共聚焦拉曼装置下通过原子力显微镜(AFM)操纵获得受控的金等离激元纳米结构的可能性。通过在使用共聚焦显微镜监控金纳米颗粒(Nps)的同时进行操作,可以生成单个纳米结构,即目前在这些纳米尺度上无法通过光刻技术获得的等离子体分子。这种灵活的方法使我们能够调整纳米结构的等离子体共振,生成局部热点,并避免尖端增强拉曼光谱(TERS)或表面增强拉曼光谱(SERS)实验所固有的强电近场梯度的影响。与其他单个纳米物体相互作用的等离激元分子之间的Np距离和对称性控制着组件的共振条件及其拉曼响应的增强。本文还展示了一些等离子体结构如何产生具有高电场强度而没有强梯度的局部纳米区域。这些最后的等离激元分子可用作波长可调的“纳米透镜”,并能够增强邻近纳米物体的拉曼信号。这样,一个单独的探针纳米物体在由纳米透镜定义的空间区域中的定位就变得非常不受限制,这与TERS实验相反,在该实验中,尖端与样品之间的间距至关重要。在这些方法中获得的实验灵活性在此通过碳纳米管的增强拉曼散射来说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号