首页> 美国卫生研究院文献>Materials >Effects of Dislocation Density Evolution on Mechanical Behavior of OFHC Copper during High-Speed Machining
【2h】

Effects of Dislocation Density Evolution on Mechanical Behavior of OFHC Copper during High-Speed Machining

机译:位错密度演变对高速加工过程中OFHC铜力学行为的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper aims at investigating the change in material behavior induced by microstructure evolution during high-speed machining processes. Recently, high-speed machining has attracted quite a lot of interest from researchers due to its high efficiency and surface quality in machining large-scale components. However, the material behavior could change significantly at high-cutting speeds compared to the conventional cutting conditions, including their microstructure and t mechanical response. This is due to the basic physics of material at microscopic levels with high strain, high strain rates, and high temperatures. In this study, the dislocation density-related microstructure evolution process and mechanical behavior of OFHC (Oxygen-free high-conductivity) copper in high-speed machining with speeds ranging from 750 m/min to 3000 m/min are investigated. SEM (Scanning Electron Microscope) and advanced EBSD (Electron Backscattered Diffraction) techniques are used to obtain high-quality images of the microstructures and analyze the dislocation density and grain size evolution with different cutting speeds. Moreover, as material plasticity is induced by the motion of dislocations at micro-scales, a dislocation-density based (DDB) model is applied to predict strain-stress and microstructure information during the cutting process. The distributions of dislocation densities, both statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs), are obtained through simulation and experimentation, respectively. The results show that the fluctuation in the cutting forces at high cutting speeds is induced by the specific evolution and distribution of the dislocation density under high strain-rates, and the periodical distribution of sub-surface and fracture behavior during chip separation, which are also found to be influenced by the evolution of the dislocation density.
机译:本文旨在研究高速加工过程中由微观结构演变引起的材料性能变化。最近,由于高速加工在大规模零件加工中的高效率和表面质量,引起了研究人员的极大兴趣。但是,与常规切削条件相比,材料性能在高切削速度下可能会发生显着变化,包括其微观结构和机械响应。这是由于材料在微观水平上具有高应变,高应变速率和高温的基本物理性质。在这项研究中,研究了在速度从750 m / min到3000 m / min的高速加工中OFHC(无氧高导电性)铜的位错密度相关的微观结构演变过程和力学行为。 SEM(扫描电子显微镜)和先进的EBSD(电子背散射衍射)技术用于获得显微组织的高质量图像,并分析不同切削速度下的位错密度和晶粒尺寸演变。此外,由于材料的塑性是由位错运动引起的,因此,基于位错密度(DDB)的模型可用于预测切削过程中的应变应力和微观结构信息。通过模拟和实验分别获得了位错密度的分布,包括统计存储的位错(SSD)和几何上必需的位错(GND)。结果表明,高速切削时切削力的波动是由高应变率下位错密度的特定演化和分布,以及切屑分离过程中亚表面的周期性分布和断裂行为引起的,这也是切削过程中的原因。发现受位错密度演变的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号