首页> 美国卫生研究院文献>Materials >FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength
【2h】

FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength

机译:确定拉伸强度的延展性基体上厚脆性涂层/膜中平面应力分布的有限元建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
机译:陶瓷-金属界面存在于各种材料结构和装置中,这些材料和装置容易遭受诸如破裂的破坏,这通常是由于其不相容的性质,例如,热膨胀失配。在这些多层系统失效的情况下,界面剪切强度是衡量界面坚固性的好方法,特别是对于平面薄膜而言。 Agrawal和Raj有一种被广泛使用的剪切滞后模型和方法,用于分析和测量易碎基底上脆性薄膜的界面剪切强度。对于在钢基材上的一种聚合物衍生的陶瓷涂层(厚度约18μm)使用这种经典模型会导致界面抗剪强度值较高。在这里,我们介绍了这种涂层系统受到平面内张力时的有限元模拟。结果表明,涂​​层中的面内应力是不均匀的,即在膜的整个厚度上变化。因此,它们不符合经典模型的基本假设之一:均匀的面内应力。此外,还研究了膜厚度,裂纹间距和杨氏模量这三个重要参数对面内应力分布的影响。提出了一种新的失效准则“平均厚度平面应力”(TIS)来估算界面剪切强度,从而可以更真实地估算韧性材料上的脆性厚膜/涂层的拉伸强度和界面剪切强度。基材。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号