首页> 美国卫生研究院文献>Materials >Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures
【2h】

Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures

机译:胶体半导体纳米结构中的载流子增殖机理和竞争过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantum confined semiconductor nanoparticles, such as colloidal quantum dots, nanorods and nanoplatelets have broad extended absorption spectra at energies above their bandgaps. This means that they can absorb light at high photon energies leading to the formation of hot excitons with finite excited state lifetimes. During their existence, the hot electron and hole that comprise the exciton may start to cool as they relax to the band edge by phonon mediated or Auger cooling processes or a combination of these. Alongside these cooling processes, there is the possibility that the hot exciton may split into two or more lower energy excitons in what is termed carrier multiplication (CM). The fission of the hot exciton to form lower energy multiexcitons is in direct competition with the cooling processes, with the timescales for multiplication and cooling often overlapping strongly in many materials. Once CM has been achieved, the next challenge is to preserve the multiexcitons long enough to make use of the bonus carriers in the face of another competing process, non-radiative Auger recombination. However, it has been found that Auger recombination and the several possible cooling processes can be manipulated and usefully suppressed or retarded by engineering the nanoparticle shape, size or composition and by the use of heterostructures, along with different choices of surface treatments. This review surveys some of the work that has led to an understanding of the rich carrier dynamics in semiconductor nanoparticles, and that has started to guide materials researchers to nanostructures that can tilt the balance in favour of efficient CM with sustained multiexciton lifetimes.
机译:量子受限的半导体纳米粒子,例如胶体量子点,纳米棒和纳米片,在其带隙以上的能量处具有宽广的扩展吸收光谱。这意味着它们可以吸收高光子能量的光,从而形成激发态寿命有限的热激子。在它们的存在期间,构成激子的热电子和空穴在通过声子介导或俄歇冷却过程或这些过程的组合松弛到能带边缘时可能开始冷却。除了这些冷却过程外,热激子还可能分裂为两个或更多个能量较低的激子,称为载流子倍增(CM)。热激子的裂变形成较低能量的多激子与冷却过程直接竞争,在许多材料中,倍增和冷却的时间尺度经常强烈重叠。一旦实现了CM,下一个挑战就是将多激子保存足够长的时间,以在面对另一个竞争过程(非辐射俄歇重组)时利用额外的载子。然而,已经发现通过工程化纳米颗粒的形状,尺寸或组成并通过使用异质结构以及不同的表面处理选择,可以操纵并且有效地抑制或阻止俄歇复合和几种可能的冷却过程。这篇综述调查了一些工作,这些工作使人们了解了半导体纳米颗粒中丰富的载流子动力学,并开始将材料研究人员引导至可以倾斜平衡的纳米结构,从而有利于具有持续多激子寿命的高效CM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号