首页> 美国卫生研究院文献>Materials >Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy
【2h】

Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy

机译:Ti / N注入多能M50钢的梯度组织和力学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

M50 bearing steels were alternately implanted with Ti+ and N+ ions using solid and gas ion sources of implantation system, respectively. N-implantation was carried out at an energy of about 80 keV and a fluence of 2 × 1017 ions/cm2, and Ti-implantation at an energy of about 40–90 keV and a fluence of 2 × 1017 ions/cm2. The microstructures of modification layers were analyzed by grazing-incidence X-ray diffraction, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results showed that the gradient structure was formed under the M50 bearing steel subsurface, along the ion implantation influence zone composed of amorphous, nanocrystalline, and gradient-refinement phases. A layer of precipitation compounds like TiN is formed. In addition, nano-indentation hardness and tribological properties of the gradient structure subsurface were examined using a nano-indenter and a friction and wear tester. The nano-indentation hardness of N + Ti-co-implanted sample is above 12 GPa, ~1.3 times than that of pristine samples. The friction coefficient is smaller than 0.2, which is 22.2% of that of pristine samples. The synergism between precipitation-phase strengthening and gradient microstructure is the main mechanism for improving the mechanical properties of M50 materials.
机译:M50轴承钢分别使用固体和气体离子注入系统分别注入Ti + 和N + 离子。 N注入的能量约为80 keV,注量为2×10 17 离子/ cm 2 ,Ti注入的能量约为40。 –90 keV,注量为2×10 17 离子/ cm 2 。通过掠入射X射线衍射,俄歇电子能谱,X射线光电子能谱和透射电子显微镜来分析改性层的微观结构。结果表明,沿M50轴承钢下表面沿由非晶,纳米晶和梯度细化相组成的离子注入影响区形成了梯度结构。形成一层沉淀化合物,如TiN。另外,使用纳米压头和摩擦磨损测试仪检查了纳米压痕硬度和梯度结构表面的摩擦学性能。 N + Ti共注入样品的纳米压痕硬度高于12 GPa,约为原始样品的1.3倍。摩擦系数小于0.2,是原始样品的22.2%。析出相强化与梯度组织之间的协同作用是改善M50材料力学性能的主要机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号