首页> 美国卫生研究院文献>Materials >A Numerical Study on the Effect of Debris Layer on Fretting Wear
【2h】

A Numerical Study on the Effect of Debris Layer on Fretting Wear

机译:碎片层对微动磨损影响的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fretting wear is the material damage of two contact surfaces caused by micro relative displacement. Its characteristic is that debris is trapped on the contact surfaces. Depending on the material properties, the shapes of the debris, and the dominant wear mechanisms, debris can play different roles that either protect or harm interfaces. Due to the micro scale of the debris, it is difficult to obtain instantaneous information and investigate debris behavior in experiments. The Finite Element Method (FEM) has been used to model the process of fretting wear and calculate contact variables, such as contact stress and relative slip during the fretting wear process. In this research, a 2D fretting wear model with a debris layer was developed to investigate the influence of debris on fretting wear. Effects of different factors such as thickness of the debris layer, Young’s modulus of the debris layer, and the time of importing the layer into the FE model were considered in this study. Based on FE results, here we report that: (a) the effect of Young’s modulus of the debris layer on the contact pressure is not significant; (b) the contact pressure between the debris layer and the flat specimen decreases with increasing thickness of the layer and (c) by importing the debris layer in different fretting wear cycles, the debris layer shows different roles in the wear process. At the beginning of the wear cycle, the debris layer protects the contact surfaces of the first bodies (cylindrical pad and flat specimen). However, in the final cycle, the wear volumes of the debris layers exhibit slightly higher damage compared to the model without the debris layer in all considered cases.
机译:微动磨损是由微小相对位移引起的两个接触面的材料损坏。其特征是碎屑被困在接触表面上。根据材料的特性,碎屑的形状以及主要的磨损机理,碎屑可以扮演保护或损害界面的不同角色。由于碎片的微观规模,因此难以在实验中获得即时信息和研究碎片行为。有限元方法(FEM)已用于为微动磨损过程建模并计算接触变量,例如微动磨损过程中的接触应力和相对滑动。在这项研究中,开发了带有碎片层的二维微动磨损模型,以研究碎片对微动磨损的影响。在这项研究中,考虑了不同因素的影响,例如碎屑层的厚度,碎屑层的杨氏模量以及将该层导入FE模型的时间。根据有限元分析结果,我们在此报告:(a)碎屑层的杨氏模量对接触压力的影响不明显; (b)碎屑层与平坦试样之间的接触压力随层厚度的增加而降低;(c)通过在不同的微动磨损循环中导入碎屑层,碎屑层在磨损过程中表现出不同的作用。在磨损周期开始时,碎屑层会保护第一主体(圆柱垫和扁平试样)的接触表面。但是,在最后一个循环中,在所有考虑的情况下,与没有杂物层的模型相比,杂物层的磨损量显示出稍高的损坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号