首页> 美国卫生研究院文献>Materials >Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering
【2h】

Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering

机译:聚丙烯酰胺作为用于组织工程的新型可降解细胞载体材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Polycaprolactone (PCL) polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suitable in applications in which scaffold support is needed for a shorter time. A recently developed class of polyacylurethanes (PAUs) is expected to fulfill such requirements. Our aim was to assess in vitro the degradation of PAUs and evaluate their suitability as temporary scaffold materials to support soft tissue repair. With both a mass loss of 2.5–3.0% and a decrease in molar mass of approx. 35% over a period of 80 days, PAUs were shown to degrade via both bulk and surface erosion mechanisms. Fourier Transform Infra Red (FTIR) spectroscopy was successfully applied to study the extent of PAUs microphase separation during in vitro degradation. The microphase separated morphology of PAU1000 (molar mass of the oligocaprolactone soft segment = 1000 g/mol) provided this polymer with mechano-physical characteristics that would render it a suitable material for constructs and devices. PAU1000 exhibited excellent haemocompatibility in vitro. In addition, PAU1000 supported both adhesion and proliferation of vascular endothelial cells and this could be further enhanced by pre-coating of PAU1000 with fibronectin (Fn). The contact angle of PAU1000 decreased both with in vitro degradation and by incubation in biological fluids. In endothelial cell culture medium the contact angle reached 60°, which is optimal for cell adhesion. Taken together, these results support the application of PAU1000 in the field of soft tissue repair as a temporary degradable scaffold.
机译:聚己内酯(PCL)聚酯和基于PCL软链段的分段脂肪族聚酯氨基甲酸酯已被彻底研究为可生物降解的组织工程支架。尽管已证明它们可以作为长期植入物,但这些材料的降解速度非常缓慢,因此不适合需要更短时间支撑脚手架的应用。预计最近开发的一类聚酰基乙烷(PAU)可以满足此类要求。我们的目的是在体外评估PAU的降解并评估其作为临时支架材料以支持软组织修复的适用性。两者的质量损失均为2.5–3.0%,摩尔质量的降低约为。在80天内,有35%的PAU会通过整体和表面腐蚀机制而降解。傅里叶变换红外(FTIR)光谱已成功应用于研究体外降解过程中PAUs微相分离的程度。 PAU1000的微相分离形态(低己内酯软链段的摩尔质量= 1000 g / mol)为该聚合物提供了机械物理特性,使其成为适用于构建体和装置的材料。 PAU1000在体外表现出优异的血液相容性。此外,PAU1000同时支持血管内皮细胞的粘附和增殖,可以通过用纤连蛋白(Fn)预先包被PAU1000来进一步增强。 PAU1000的接触角随体外降解和在生物液体中孵育而降低。在内皮细胞培养基中,接触角达到60°,这对于细胞粘附是最佳的。综上所述,这些结果支持PAU1000在软组织修复领域中作为临时可降解支架的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号