您现在的位置:首页>美国卫生研究院文献>Contrast Media Molecular Imaging

期刊信息

  • 期刊名称:

    -

  • 刊频: Bimonthly
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/15>
289条结果
  • 机译 量身定制的3D打印切片机进行MR成像-组织学相关性的肿瘤学评估
    摘要:3D printing and reverse engineering are innovative technologies that are revolutionizing scientific research in the health sciences and related clinical practice. Such technologies are able to improve the development of various custom-made medical devices while also lowering design and production costs. Recent advances allow the printing of particularly complex prototypes whose geometry is drawn from precise computer models designed on in vivo imaging data. This review summarizes a new method for histological sample processing (applicable to e.g., the brain, prostate, liver, and renal mass) which employs a personalized mold developed from diagnostic images through computer-aided design software and 3D printing. Through positioning the custom mold in a coherent manner with respect to the organ of interest (as delineated by in vivo imaging data), the cutting instrument can be precisely guided in order to obtain blocks of tissue which correspond with high accuracy to the slices imaged. This approach appeared crucial for validation of new quantitative imaging tools, for an accurate imaging-histopathological correlation and for the assessment of radiogenomic features extracted from oncological lesions. The aim of this review is to define and describe 3D printing technologies which are applicable to oncological assessment and slicer design, highlighting the radiological and pathological perspective as well as recent applications of this approach for the histological validation of and correlation with MR images.
  • 机译 肺部的窗口:分子成像作为分析急性肺部疾病病理生理机制的工具
    • 作者:Guido Musch
    • 刊名:Contrast Media Molecular Imaging
    • 2019年第期
    摘要:In recent years, imaging has given a fundamental contribution to our understanding of the pathophysiology of acute lung diseases. Several methods have been developed based on computed tomography (CT), positron emission tomography (PET), and magnetic resonance (MR) imaging that allow regional, in vivo measurement of variables such as lung strain, alveolar size, metabolic activity of inflammatory cells, ventilation, and perfusion. Because several of these methods are noninvasive, they can be successfully translated from animal models to patients. The aim of this paper is to review the advances in knowledge that have been accrued with these imaging modalities on the pathophysiology of acute respiratory distress syndrome (ARDS), ventilator-induced lung injury (VILI), asthma and chronic obstructive pulmonary disease (COPD).
  • 机译 基于纳米粒子的磁共振成像剂
    摘要:Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality that is routinely used in clinics, providing anatomical information with micron resolution, soft tissue contrast, and deep penetration. Exogenous contrast agents increase image contrast by shortening longitudinal (T1) and transversal (T2) relaxation times. Most of the T1 agents used in clinical MRI are based on paramagnetic lanthanide complexes (largely Gd-based). In moving to translatable formats of reduced toxicity, greater chemical stability, longer circulation times, higher contrast, more controlled functionalisation and additional imaging modalities, considerable effort has been applied to the development of nanoparticles bearing paramagnetic ions. This review summarises the most relevant examples in the synthesis and biomedical applications of paramagnetic nanoparticles as contrast agents for MRI and multimodal imaging. It includes the most recent developments in the field of production of agents with high relaxivities, which are key for effective contrast enhancement, exemplified through clinically relevant examples.
  • 机译 根据已发表的荟萃分析,18F-FDG PET / CT在传染性和炎性疾病中的诊断性能
    • 作者:Giorgio Treglia
    • 刊名:Contrast Media Molecular Imaging
    • 2019年第期
    摘要:Purpose To date, several meta-analyses have reported data about the diagnostic performance of 18F-FDG PET/CT in infectious and inflammatory diseases. This article aims to summarize the published evidence-based data about the diagnostic performance of 18F-FDG PET/CT in this setting.
  • 机译 临床前成像生物标记物用于缺血后神经血管重塑
    摘要:In the pursuit of understanding the pathological alterations that underlie ischaemic injuries, such as vascular remodelling and reorganisation, there is a need for recognising the capabilities and limitations of in vivo imaging techniques. Thus, this review presents contemporary published research of imaging modalities that have been implemented to study postischaemic neurovascular changes in small animals. A comparison of the technical aspects of the various imaging tools is included to set the framework for identifying the most appropriate methods to observe postischaemic neurovascular remodelling. A systematic search of the PubMed® and Elsevier's Scopus databases identified studies that were conducted between 2008 and 2018 to explore postischaemic neurovascular remodelling in small animal models. Thirty-five relevant in vivo imaging studies are included, of which most made use of magnetic resonance imaging or positron emission tomography, whilst various optical modalities were also utilised. Notably, there is an increasing trend of using multimodal imaging to exploit the most beneficial properties of each imaging technique to elucidate different aspects of neurovascular remodelling. Nevertheless, there is still scope for further utilising noninvasive imaging tools such as contrast agents or radiotracers, which will have the ability to monitor neurovascular changes particularly during restorative therapy. This will facilitate more successful utility of the clinical imaging techniques in the interpretation of neurovascular reorganisation over time.
  • 机译 用于恶性肿瘤精确治疗的多功能微型超声造影剂
    摘要:In ultrasonography, ultrasound contrast agents (UCAs) that possess high acoustic impedance mismatch with the bulk medium are frequently employed to highlight the borders between tissues by enhanced ultrasound scattering in a clinic. Typically, the most common UCA, microbubble, is generally close in size to a red blood cell (<∼10 μm). These microscale UCAs cannot be directly entrapped into the target cells but generate several orders of magnitude stronger echo signals than the nanoscale ones. And their large containment and high ultrasound responsiveness also greatly facilitate to perform combined treatments, e.g., drug delivery and other imaging techniques. So multifunctionalized microscale UCAs appear on this scene and keep growing toward a promising direction for precise theranostics. In this review, we systematically summarize the new advances in the principles and preparations of multifunctionalized microscale UCAs and their medical applications for malignant tumors.
  • 机译 使用生物电阻抗分析(BIA)和双能X射线吸收仪(DXA)评估健康和疾病中的身体成分:关键概述
    摘要:The measurement of body composition (BC) represents a valuable tool to assess nutritional status in health and disease. The most used methods to evaluate BC in the clinical practice are based on bicompartment models and measure, directly or indirectly, fat mass (FM) and fat-free mass (FFM). Bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA) (nowadays considered as the reference technique in clinical practice) are extensively used in epidemiological (mainly BIA) and clinical (mainly DXA) settings to evaluate BC. DXA is primarily used for the measurements of bone mineral content (BMC) and density to assess bone health and diagnose osteoporosis in defined anatomical regions (femur and spine). However, total body DXA scans are used to derive a three-compartment BC model, including BMC, FM, and FFM. Both these methods feature some limitations: the accuracy of BIA measurements is reduced when specific predictive equations and standardized measurement protocols are not utilized whereas the limitations of DXA are the safety of repeated measurements (no more than two body scans per year are currently advised), cost, and technical expertise. This review aims to provide useful insights mostly into the use of BC methods in prevention and clinical practice (ambulatory or bedridden patients). We believe that it will stimulate a discussion on the topic and reinvigorate the crucial role of BC evaluation in diagnostic and clinical investigation protocols.
  • 机译 肾移植排斥反应:基于超声和MRI的无创诊断
    摘要:To date, allogeneic kidney transplantation remains the best available therapeutic option for patients with end-stage renal disease regarding overall survival and quality of life. Despite the advancements in immunosuppressive drugs and protocols, episodes of acute allograft rejection, a sterile inflammatory process, continue to endanger allograft survival. Since effective treatment for acute rejection episodes is available, instant diagnosis of this potentially reversible graft injury is imperative. Although histological examination by invasive core needle biopsy of the graft remains the gold standard for the diagnosis of ongoing rejection, it is always associated with the risk of causing substantial graft injury as a result of the biopsy procedure itself. At the same time, biopsies are not immediately feasible for a considerable number of patients taking anticoagulants due to the high risk of complications such as bleeding and uneven distribution of pathological changes within the graft. This can result in the wrong diagnosis due to the small size of the tissue sample taken. Therefore, there is a need for a tool that overcomes these problems by being noninvasive and capable of assessing the whole organ at the same time for specific and fast detection of acute allograft rejection. In this article, we review current state-of-the-art approaches for noninvasive diagnostics of acute renal transplant inflammation, i.e., rejection. We especially focus on nonradiation-based methods using magnetic resonance imaging (MRI) and ultrasound.
  • 机译 肿瘤学中最先进的临床前光声成像:癌症治疗学的最新进展
    摘要:The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.
  • 机译 中性粒细胞弹性蛋白酶活性成像:基于活动的探针和基于底物的探针的设计和应用中的最新方法
    摘要:The last few decades of protease research has confirmed that a number of important biological processes are strictly dependent on proteolysis. Neutrophil elastase (NE) is a critical protease in immune response and host defense mechanisms in both physiological and disease-associated conditions. Particularly, NE has been identified as a promising biomarker for early diagnosis of lung inflammation. Recent studies have shown an increasing interest in developing methods for NE activity imaging both in vitro and in vivo. Unlike anatomical imaging modalities, functional molecular imaging, including enzymatic activities, enables disease detection at a very early stage and thus constitutes a much more accurate approach. When combined with advanced imaging technologies, opportunities arise for measuring imbalanced proteolytic activities with unprecedented details. Such technologies consist in building the highest resolved and sensitive instruments as well as the most specific probes based either on peptide substrates or on covalent inhibitors. This review outlines strengths and weaknesses of these technologies and discuss their applications to investigate NE activity as biomarker of pulmonary inflammatory diseases by imaging.
  • 机译 葡萄糖代谢的核成像:超越18F-FDG
    摘要:Glucose homeostasis plays a key role in numerous fundamental aspects of life, and its dysregulation is associated with many important diseases such as cancer. The atypical glucose metabolic phenomenon, known as the Warburg effect, has been recognized as a hallmark of cancer and serves as a promising target for tumor specific imaging. At present, 2-deoxy-2-[18F]fluoro-glucose (18F-FDG)-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for this purpose. The powerful impact of 18F-FDG has prompted intensive research efforts into other glucose-based radiopharmaceuticals for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. Currently, glucose and its analogues have been labeled with various radionuclides such as 99mTc, 111In, 18F, 68Ga, and 64Cu and have been successfully investigated for tumor metabolic imaging in many preclinical studies. Moreover, 99mTc-ECDG has advanced into its early clinical trials and brings a new era of tumor imaging beyond 18F-FDG. In this review, preclinical and early clinical development of glucose-based radiopharmaceuticals for tumor metabolic imaging will be summarized.
  • 机译 对比增强的MicroCT用于生物组织的虚拟3D解剖病理学:文献综述
    摘要:To date, the combination of histological sectioning, staining, and microscopic assessment of the 2D sections is still the golden standard for structural and compositional analysis of biological tissues. X-ray microfocus computed tomography (microCT) is an emerging 3D imaging technique with high potential for 3D structural analysis of biological tissues with a complex and heterogeneous 3D structure, such as the trabecular bone. However, its use has been mostly limited to mineralized tissues because of the inherently low X-ray absorption of soft tissues. To achieve sufficient X-ray attenuation, chemical compounds containing high atomic number elements that bind to soft tissues have been recently adopted as contrast agents (CAs) for contrast-enhanced microCT (CE-CT); this novel technique is very promising for quantitative “virtual” 3D anatomical pathology of both mineralized and soft biological tissues. In this paper, we provided a review of the advances in CE-CT since the very first reports on the technology to date. Perfusion CAs for in vivo imaging have not been discussed, as the focus of this review was on CAs that bind to the tissue of interest and that are, thus, used for ex vivo imaging of biological tissues. As CE-CT has mostly been applied for the characterization of musculoskeletal tissues, we have put specific emphasis on these tissues. Advantages and limitations of multiple CAs for different musculoskeletal tissues have been highlighted, and their reproducibility has been discussed. Additionally, the advantages of the “full” 3D CE-CT information have been pinpointed, and its importance for more detailed structural, spatial, and functional characterization of the tissues of interest has been shown. Finally, the remaining challenges that are still hampering a broader adoption of CE-CT have been highlighted, and suggestions have been made to move the field of CE-CT imaging one step further towards a standard accepted tool for quantitative virtual 3D anatomical pathology.
  • 机译 乳腺癌小鼠模型中精确医学的临床前分子成像
    摘要:Precision and personalized medicine is gaining importance in modern clinical medicine, as it aims to improve diagnostic precision and to reduce consequent therapeutic failures. In this regard, prior to use in human trials, animal models can help evaluate novel imaging approaches and therapeutic strategies and can help discover new biomarkers. Breast cancer is the most common malignancy in women worldwide, accounting for 25% of cases of all cancers and is responsible for approximately 500,000 deaths per year. Thus, it is important to identify accurate biomarkers for precise stratification of affected patients and for early detection of responsiveness to the selected therapeutic protocol. This review aims to summarize the latest advancements in preclinical molecular imaging in breast cancer mouse models. Positron emission tomography (PET) imaging remains one of the most common preclinical techniques used to evaluate biomarker expression in vivo, whereas magnetic resonance imaging (MRI), particularly diffusion-weighted (DW) sequences, has been demonstrated as capable of distinguishing responders from nonresponders for both conventional and innovative chemo- and immune-therapies with high sensitivity and in a noninvasive manner. The ability to customize therapies is desirable, as this will enable early detection of diseases and tailoring of treatments to individual patient profiles. Animal models remain irreplaceable in the effort to understand the molecular mechanisms and patterns of oncologic diseases.
  • 机译 基于逆电子需求Diels-Alder反应的预靶向核显像和放射免疫疗法以及预靶向合成设计中的关键因素
    摘要:The exceptional speed and biorthogonality of the inverse electron-demand Diels–Alder (IEDDA) click chemistry between 1,2,4,5-tetrazines and strained alkene dienophiles have made it promising in the realm of pretargeted imaging and therapy. During the past 10 years, the IEDDA-pretargeted strategies have been tested and have already proven capable of producing images with high tumor-to-background ratios and improving therapeutic effect. This review will focus on recent applications of click chemistry ligations in the pretargeted imaging studies of single photon emission computed tomography (SPECT), positron emission tomography (PET), and pretargeted radioimmunotherapy investigations. Additionally, the influence factors of stability, reactivity, and pharmacokinetic properties of TCO tag modified immunoconjugates and radiolabeled Tz derivatives were also summarized in this article, which should be carefully considered in the system design in order to develop a successful pretargeted methodology. We hope that this review will not only equip readers with a knowledge of pretargeted methodology based on IEDDA click chemistry but also inspire synthetic chemists and radiochemists to develop pretargeted radiopharmaceutical components in a more innovative way with various influence factors considered.
  • 机译 诊断成像与病理学相结合可改善癌症的诊断和预后
    摘要:In the era of personalized medicine, the management of oncological patients requires a translational and multidisciplinary approach. During early phases of cancer development, biochemical alterations of cell metabolism occur much before the formation of detectable tumour masses. Current molecular imaging techniques, targeted to the study of molecular kinetics, employ molecular tracers capable of detecting cancer lesions with both high sensitivity and specificity while also providing essential information for both prognosis and therapy. On the contrary, complementary and crucial information is provided by histopathological examination and ancillary techniques such as immunohistochemistry. Thus, the successful collaboration between diagnostic imaging and anatomic pathology can represent a fundamental step in the “tortuous” but decisive path towards personalized medicine.
  • 机译 序贯[18F] FDG- [18F] FMISO PET和3T多参数MRI有助于了解乳腺癌异质性以及与患者结果的相关性:首次临床经验
    摘要:The aim of this study was to assess whether sequential multiparametric 18[F]fluoro-desoxy-glucose (18[F]FDG)/[18F]fluoromisonidazole ([18F]FMISO) PET-MRI in breast cancer patients is possible, facilitates information on tumor heterogeneity, and correlates with prognostic indicators. In this pilot study, IRB-approved, prospective study, nine patients with ten suspicious breast lesions (BIRADS 5) and subsequent breast cancer diagnosis underwent sequential combined [18F]FDG/[18F]FMISO PET-MRI. [18F]FDG was used to assess increased glycolysis, while [18F]FMISO was used to detect tumor hypoxia. MRI protocol included dynamic breast contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). Qualitative and quantitative multiparametric imaging findings were compared with pathological features (grading, proliferation, and receptor status) and clinical endpoints (recurrence/metastases and disease-specific death) using multiple correlation analysis. Histopathology was the standard of reference. There were several intermediate to strong correlations identified between quantitative bioimaging markers, histopathologic tumor characteristics, and clinical endpoints. Based on correlation analysis, multiparametric criteria provided independent information. The prognostic indicators proliferation rate, death, and presence/development of recurrence/metastasis correlated positively, whereas the prognostic indicator estrogen receptor status correlated negatively with PET parameters. The strongest correlations were found between disease-specific death and [18F]FDGmean (R=0.83, p < 0.01) and between the presence/development of metastasis and [18F]FDGmax (R=0.79, p < 0.01), respectively. This pilot study indicates that multiparametric [18F]FDG/[18F]FMISO PET-MRI might provide complementary quantitative prognostic information on breast tumors including clinical endpoints and thus might be used to tailor treatment for precision medicine in breast cancer.
  • 机译 用于原发性肺肿瘤检测和3D分割的AI动力肺结节算法的评估
    摘要:Automated detection and segmentation is a prerequisite for the deployment of image-based secondary analyses, especially for lung tumors. However, currently only applications for lung nodules ≤3 cm exist. Therefore, we tested the performance of a fully automated AI-based lung nodule algorithm for detection and 3D segmentation of primary lung tumors in the context of tumor staging using the CT component of FDG-PET/CT and including all T-categories (T1–T4). FDG-PET/CTs of 320 patients with histologically confirmed lung cancer performed between 01/2010 and 06/2016 were selected. First, the main primary lung tumor within each scan was manually segmented using the CT component of the PET/CTs as reference. Second, the CT series were transferred to a platform with AI-based algorithms trained on chest CTs for detection and segmentation of lung nodules. Detection and segmentation performance were analyzed. Factors influencing detection rates were explored with binominal logistic regression and radiomic analysis. We also processed 94 PET/CTs negative for pulmonary nodules to investigate frequency and reasons of false-positive findings. The ratio of detected tumors was best in the T1-category (90.4%) and decreased continuously: T2 (70.8%), T3 (29.4%), and T4 (8.8%). Tumor contact with the pleura was a strong predictor of misdetection. Segmentation performance was excellent for T1 tumors (r = 0.908, p < 0.001) and tumors without pleural contact (r = 0.971, p < 0.001). Volumes of larger tumors were systematically underestimated. There were 0.41 false-positive findings per exam. The algorithm tested facilitates a reliable detection and 3D segmentation of T1/T2 lung tumors on FDG-PET/CTs. The detection and segmentation of more advanced lung tumors is currently imprecise due to the conception of the algorithm for lung nodules <3 cm. Future efforts should therefore focus on this collective to facilitate segmentation of all tumor types and sizes to bridge the gap between CAD applications for screening and staging of lung cancer.
  • 机译 动态对比增强MR与小肠定量灌注分析在克罗恩病炎症和纤维化病变之间的血管评估中的可行性研究
    摘要:Aim To assess the feasibility of dynamic contrast-enhanced perfusion-MRI in characterization of active small-bowel inflammation and chronic mural fibrosis in patients with Crohnʼs disease (CD).
  • 机译 扩散峰度MR成像与常规扩散加权成像从良性肝结节中区分出肝细胞癌
    摘要:Objectives To assess the efficacy of diffusion kurtosis imaging (DKI) and compare DKI-derived parameters with conventional diffusion-weighted imaging (DWI) for distinguishing hepatocellular carcinoma (HCC) from benign hepatic nodules including focal nodular hyperplasia (FNH), hemangioma, and hepatocellular adenoma (HCA).
  • 机译 用新型混合铋/碳纳米管造影剂标记干细胞用于X射线成像
    摘要:The poor retention and survival of cells after transplantation to solid tissue represent a major obstacle for the effectiveness of stem cell-based therapies. The ability to track stem cells in vivo can lead to a better understanding of the biodistribution of transplanted cells, in addition to improving the analysis of stem cell therapies' outcomes. Here, we described the use of a carbon nanotube-based contrast agent (CA) for X-ray computed tomography (CT) imaging as an intracellular CA to label bone marrow-derived mesenchymal stem cells (MSCs). Porcine MSCs were labeled without observed cytotoxicity. The CA consists of a hybrid material containing ultra-short single-walled carbon nanotubes (20–80 nm in length, US-tubes) and Bi(III) oxo-salicylate clusters which contain four Bi3+ ions per cluster (Bi4C). The CA is thus abbreviated as Bi4C@US-tubes.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号