首页> 美国卫生研究院文献>Cerebrospinal Fluid Research >Fluid and ion transfer across the blood–brain and blood–cerebrospinal fluid barriers; a comparative account of mechanisms and roles
【2h】

Fluid and ion transfer across the blood–brain and blood–cerebrospinal fluid barriers; a comparative account of mechanisms and roles

机译:液体和离子通过血脑屏障和血脑脊液屏障传递;机制和作用的比较说明

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood–brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood–brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood–brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood–brain barrier is also important in regulating HCO3 and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood–brain barrier HCO3 transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3 concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.
机译:分离大脑和血液的两个主要界面具有不同的主要作用。脉络膜丛将脑脊液分泌到脑室中,占到脑中大部分净流体的进入。水通道蛋白AQP1允许水通过脉络膜上皮的顶表面转移。另一种蛋白质,也许是GLUT1,在基底外侧表面上很重要。液体的分泌是由顶端Na + -泵驱动的。 K + 的分泌是通过细胞旁的净流入通过相对泄漏的紧密连接而发生的,该紧密连接部分被跨细胞外排所抵消。血脑屏障衬里的大脑微脉管系统允许脑细胞代谢所需的O2,CO2和葡萄糖通过。由于高抗性,微血管内皮细胞之间的紧密连接极大地限制了大多数极性溶质的运输。由于溶质渗透率低,静水压差不能解释流体的净运动。然而,净溶质传输后,水的渗透性足以与水一起分泌液体。内皮细胞具有离子转运蛋白,如果适当安排,它们可以支持液体分泌。证据支持该比率小于但不小于脉络丛的比率。在血脑屏障处,Na + 示踪剂流入大脑的流量大大超过了任何可能的净流量。示踪剂通量可能主要通过细胞旁途径发生。血脑屏障是维持组织液(ISF)K + 浓度在严格范围内的最重要界面。这很可能是因为Na + -泵改变了K + 从ISF运出的速率,以响应K + 的微小变化浓度。也有证据表明,随着血浆浓度的长期变化,K + 转运蛋白的功能调节。血脑屏障对调节ISF中的HCO3 -和pH值也很重要:对此调节的原理进行了回顾。严格讨论了血脑屏障HCO3 -的传输速率是慢还是快:赞成与其他离子相当的慢传输速率。在代谢性酸中毒和碱中毒中,ISF中HCO3 -浓度和pH的变化远小于血浆中,而在呼吸性酸中毒中,pHISF和pHplasma的变化相似。总结了这两个接口的主要异同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号