您现在的位置:首页>美国卫生研究院文献>Cell Transplantation

期刊信息

  • 期刊名称:

    -

  • 刊频: Bimonthly
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<12/20>
481条结果
  • 机译 通过质量和数量控制的培养,富含内皮祖细胞的人外周血单核细胞在猪伤口模型中加速血管形成和伤口愈合
    摘要:The transplantation of endothelial progenitor cells (EPCs) is used to promote wound angiogenesis. In patients with chronic wounds and accompanying morbidities, EPCs are often compromised in number and function. To overcome these limitations, we previously developed a quality and quantity controlled (QQ) culture system to enrich peripheral blood mononuclear cells (PBMNCs) in EPCs. To evaluate the wound healing efficacy of mononuclear cells (MNCs) harvested after QQ culture (QQMNCs), preclinical studies were performed on large animals. MNCs harvested from the blood of healthy human subjects were cultured in the presence of angiogenic cytokines and growth factors in a serum-free medium for 7 days. A total of 5 × 106 QQMNCs per full-thickness skin defect or control saline was injected into wounds induced in cyclosporine-immunosuppressed pigs. EPC colony-forming assays revealed a significantly higher number of definitive (partially differentiated) EPC colony-forming units in QQMNCs. Flow cytometry evaluation of QQMNC surface markers showed enrichment of CD34+ and CD133+ stem cell populations, significant reduction in CCR2+ cell percentages, and a greater than 10-fold increase in the percentage of anti-inflammatory M2-type macrophages (CD206+ cells) compared with PBMNCs. Wounds treated with QQMNCs had a significantly higher closure rate. Wounds were harvested, frozen, and sectioned at day 21 postoperatively. Hematoxylin and eosin staining revealed that the epithelization of QQMNC-treated wounds was more advanced than in controls. Treated wounds developed granulation tissue with more mature collagen and larger capillary networks. CD31 and human mitochondrial co-staining confirmed the presence of differentiated human cells within newly formed vessels. Real-time polymerase chain reaction (PCR) showed upregulation of interleukin 6 (IL-6), IL-10, and IL-4 in the wound bed, suggesting paracrine activity of the transplanted QQMNCs. Our data demonstrate for the first time that QQ culture of MNCs obtained from a small amount of peripheral blood yields vasculogenic and therapeutic cells effective in wound healing.
  • 机译 间充质干细胞源性囊泡改善猪代谢性肾血管疾病的肾脏微脉管系统。
    摘要:Background:Extracellular vesicles (EVs) released from mesenchymal stem/stromal cells (MSCs) mediate their paracrine effect, but their efficacy to protect the microcirculation of the kidney is unknown. Using a novel swine model of unilateral renovascular disease (RVD) complicated by metabolic syndrome (MetS), we tested the hypothesis that EVs would attenuate renal microvascular loss.
  • 机译 营养不良犬中异基因MuStem细胞的血管递送仅需短期免疫抑制即可避免宿主免疫并产生临床/组织益处
    摘要:Growing demonstrations of regenerative potential for some stem cells led recently to promising therapeutic proposals for neuromuscular diseases. We have shown that allogeneic MuStem cell transplantation into Golden Retriever muscular dystrophy (GRMD) dogs under continuous immunosuppression (IS) leads to persistent clinical stabilization and muscle repair. However, long-term IS in medical practice is associated with adverse effects raising safety concerns. Here, we investigate whether the IS removal or its restriction to the transplantation period could be considered. Dogs aged 4–5 months old received vascular infusions of allogeneic MuStem cells without IS (GRMDMU/no-IS) or under transient IS (GRMDMU/tr-IS). At 5 months post-infusion, persisting clinical status improvement of the GRMDMU/tr-IS dogs was observed while GRMDMU/no-IS dogs exhibited no benefit. Histologically, only 9-month-old GRMDMU/tr-IS dogs showed an increased muscle regenerative activity. A mixed cell reaction with the host peripheral blood mononucleated cells (PBMCs) and corresponding donor cells revealed undetectable to weak lymphocyte proliferation in GRMDMU/tr-IS dogs compared with a significant proliferation in GRMDMU/no-IS dogs. Importantly, any dog group showed neither cellular nor humoral anti-dystrophin responses. Our results show that transient IS is necessary and sufficient to sustain allogeneic MuStem cell transplantation benefits and prevent host immunity. These findings provide useful critical insight to designing therapeutic strategies.
  • 机译 自体基质血管部分和自体脂肪间充质干细胞联合透明质酸联合治疗绵羊骨关节炎的比较疗效
    摘要:The current study explored whether intra-articular (IA) injection of autologous adipose mesenchymal stem cells (ASCs) combined with hyaluronic acid (HA) achieved better therapeutic efficacy than autologous stromal vascular fraction (SVF) combined with HA to prevent osteoarthritis (OA) progression and determined how long autologous ASCs combined with HA must remain in the joint to observe efficacy. OA models were established by performing anterior cruciate ligament transection (ACLT) and medial meniscectomy (MM). Autologous SVF (1×107 mononuclear cells), autologous low-dose ASCs (1×107), and autologous high-dose ASCs (5×107) combined with HA, and HA alone, or saline alone were injected into the OA model animals at 12 and 15 weeks after surgery, respectively. Compared with SVF+HA treatment, low-dose ASC+HA treatment yielded better magnetic resonance imaging (MRI) scores and macroscopic results, while the cartilage thickness of the tibial plateau did not differ between low, high ASC+HA and SVF+HA treatments detected by micro-computed tomography (µCT). Immunohistochemistry revealed that high-dose ASC+HA treatment rescued hypertrophic chondrocytes expressing collagen X in the deep area of articular cartilage. Western blotting analysis indicated the high- and low-dose ASC+HA groups expressed more collagen X than did the SVF+HA group. Enzyme-linked immunosorbent assay showed treatment with both ASC+HA and SVF+HA resulted in differing anti-inflammatory and trophic effects. Moreover, superparamagnetic iron oxide particle (SPIO)-labeled autologous ASC signals were detected by MRI at 2 and 18 weeks post-injection and were found in the lateral meniscus at 2 weeks and in the marrow cavity of the femoral condyle at 18 weeks post-injection. Thus, IA injection of autologous ASC+HA may demonstrate better efficacy than autologous SVF+HA in blocking OA progression and promoting cartilage regeneration, and autologous ASCs (5×107 cells) combined with HA potentially survive for at least 18 weeks after IA injection.
  • 机译 小鼠脂肪组织与骨髓间充质基质细胞分离治疗脊髓损伤的比较
    摘要:The use of mesenchymal stromal cell (MSC) transplantation to repair the injured spinal cord has shown consistent benefits in preclinical models. However, the low survival rate of grafted MSC is one of the most important problems. In the injured spinal cord, transplanted cells are exposed to hypoxic conditions and exposed to nutritional deficiency caused by poor vascular supply. Also, the transplanted MSCs face cytotoxic stressors that cause cell death. The aim of this study was to compare adipose-derived MSCs (AD-MSCs) and bone marrow-derived MSCs (BM-MSCs) isolated from individual C57BL6/J mice in relation to: (i) cellular characteristics, (ii) tolerance to hypoxia, oxidative stress and serum-free conditions, and (iii) cellular survival rates after transplantation. AD-MSCs and BM-MSCs exhibited a similar cell surface marker profile, but expressed different levels of growth factors and cytokines. To research their relative stress tolerance, both types of stromal cells were incubated at 20.5% O2 or 1.0% O2 for 7 days. Results showed that AD-MSCs were more proliferative with greater culture viability under these hypoxic conditions than BM-MSCs. The MSCs were also incubated under H2O2-induced oxidative stress and in serum-free culture medium to induce stress. AD-MSCs were better able to tolerate these stress conditions than BM-MSCs; similarly when transplanted into the spinal cord injury region in vivo, AD-MSCs demonstrated a higher survival rate post transplantation Furthermore, this increased AD-MSC survival post transplantation was associated with preservation of axons and enhanced vascularization, as delineated by increases in anti-gamma isotype of protein kinase C and CD31 immunoreactivity, compared with the BM-MSC transplanted group. Hence, our results indicate that AD-MSCs are an attractive alternative to BM-MSCs for the treatment of severe spinal cord injury. However, it should be noted that the motor function was equally improved following moderate spinal cord injury in both groups, but with no significant improvement seen unfortunately following severe spinal cord injury in either group.
  • 机译 HO-1和BDNF过表达的间充质干细胞在狗亚急性脊髓损伤中共同移植后的愈合改善
    摘要:Abundant expression of proinflammatory cytokines after a spinal cord injury (SCI) creates an inhibitory microenvironment for neuroregeneration. The mesenchymal stem cells help to mitigate the inflammation and improve neural growth and survival. For this purpose, we potentiated the function of adipose-derived mesenchymal stem cells (Ad-MSCs) by transfecting them with brain-derived neurotrophic factor (BDNF) and heme oxygenase-1 (HO-1), through a lentivirus, to produce BDNF overexpressed Ad-MSCs (BDNF-MSCs), and HO-1 overexpressed Ad-MSCs (HO-1-MSCs). Sixteen SCI beagle dogs were randomly assigned into four treatment groups. We injected both HO-1 and BDNF-overexpressed MSCs as a combination group, to selectively control inflammation and induce neuroregeneration in SCI dogs, and compared this with BDNF-MSCs, HO-1-MSCs, and GFP-MSCs injected dogs. The groups were compared in terms of improvement in canine Basso, Beattie, and Bresnahan (cBBB) score during 8 weeks of experimentation. After 8 weeks, spinal cords were harvested and subjected to western blot analysis, immunofluorescent staining, and hematoxylin and eosin (H&E) staining. The combination group showed a significant improvement in hindlimb functions, with a higher BBB score, and a robust increase in neuroregeneration, depicted by a higher expression of Tuj-1, NF-M, and GAP-43 due to a decreased expression of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and an increased expression of interleukin-10 (IL-10) (P ≤ 0.05). H&E staining showed more reduced intraparenchymal fibrosis in the combination group than in other groups (P ≤ 0.05). It was thus suggested that the cotransplantation of HO-1 and BDNF-MSCs is more effective in promoting the healing of SCI. HO-1-MSCs reduce inflammation, which favors BDNF-induced neuroregeneration in SCI of dogs.
  • 机译 单因素SOX2通过转染体外转录的mRNA介导人间充质干细胞的直接神经重编程。
    摘要:Neural stem cells (NSCs) are a prominent cell source for understanding neural pathogenesis and for developing therapeutic applications to treat neurodegenerative disease because of their regenerative capacity and multipotency. Recently, a variety of cellular reprogramming technologies have been developed to facilitate in vitro generation of NSCs, called induced NSCs (iNSCs). However, the genetic safety aspects of established virus-based reprogramming methods have been considered, and non-integrating reprogramming methods have been developed. Reprogramming with in vitro transcribed (IVT) mRNA is one of the genetically safe reprogramming methods because exogenous mRNA temporally exists in the cell and is not integrated into the chromosome. Here, we successfully generated expandable iNSCs from human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via transfection with IVT mRNA encoding SOX2 (SOX2 mRNA) with properly optimized conditions. We confirmed that generated human UCB-MSC-derived iNSCs (UM-iNSCs) possess characteristics of NSCs, including multipotency and self-renewal capacity. Additionally, we transfected human dermal fibroblasts (HDFs) with SOX2 mRNA. Compared with human embryonic stem cell-derived NSCs, HDFs transfected with SOX2 mRNA exhibited neural reprogramming with similar morphologies and NSC-enriched mRNA levels, but they showed limited proliferation ability. Our results demonstrated that human UCB-MSCs can be used for direct reprogramming into NSCs through transfection with IVT mRNA encoding a single factor, which provides an integration-free reprogramming tool for future therapeutic application.
  • 机译 人类少突胶质细胞祖细胞对神经行为异常的改善,在新生儿室性白细胞软化症的实验模型中
    摘要:The effects of human oligodendrocyte progenitor (F3.olig2) cells on improving neurobehavioral deficits were investigated in an experimental model of periventricular leukomalacia (PVL). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide injection (HIL), and intracerebroventricularly transplanted with F3.olig2 (4 × 105 cells/rat) once at post-natal day (PND) 10 or repeatedly at PND10, 17, 27, and 37. Neurobehavioral disorders were evaluated at PND14, 20, 30, and 40 via cylinder test, locomotor activity, and rotarod performance, and cognitive function was evaluated at PND41–45 through passive avoidance and Morris water-maze performances. F3.olig2 cells recovered the rate of use of the forelimb contralateral to the injured brain, improved locomotor activity, and restored rotarod performance of PVL animals; in addition, marked improvement of learning and memory function was seen. It was confirmed that transplanted F3·olig2 cells migrated to injured areas, matured to oligodendrocytes expressing myelin basic protein (MBP), and markedly attenuated the loss of host MBP in the corpus callosum. The results indicate that the transplanted F3.olig2 cells restored neurobehavioral functions by preventing axonal demyelination, and that human oligodendrocyte progenitor cells could be a candidate for cell therapy of perinatal hypoxic-ischemic and infectious brain injuries including PVL and cerebral palsy.
  • 机译 脊髓损伤的微环境失衡
    摘要:Spinal cord injury (SCI), for which there currently is no cure, is a heavy burden on patient physiology and psychology. The microenvironment of the injured spinal cord is complicated. According to our previous work and the advancements in SCI research, ‘microenvironment imbalance’ is the main cause of the poor regeneration and recovery of SCI. Microenvironment imbalance is defined as an increase in inhibitory factors and decrease in promoting factors for tissues, cells and molecules at different times and spaces. There are imbalance of hemorrhage and ischemia, glial scar formation, demyelination and re-myelination at the tissue’s level. The cellular level imbalance involves an imbalance in the differentiation of endogenous stem cells and the transformation phenotypes of microglia and macrophages. The molecular level includes an imbalance of neurotrophic factors and their pro-peptides, cytokines, and chemokines. The imbalanced microenvironment of the spinal cord impairs regeneration and functional recovery. This review will aid in the understanding of the pathological processes involved in and the development of comprehensive treatments for SCI.
  • 机译 增强脊髓中嗅鞘细胞的治疗潜力使用神经营养蛋白修复脐带
    摘要:Autologous olfactory ensheathing cell (OEC) transplantation is a promising therapy for spinal cord injury; however, the efficacy varies between trials in both animals and humans. The main reason for this variability is that the purity and phenotype of the transplanted cells differs between studies. OECs are susceptible to modulation with neurotrophic factors, and thus, neurotrophins can be used to manipulate the transplanted cells into an optimal, consistent phenotype. OEC transplantation can be divided into 3 phases: (1) cell preparation, (2) cell administration, and (3) continuous support to the transplanted cells in situ. The ideal behaviour of OECs differs between these 3 phases; in the cell preparation phase, rapid cell expansion is desirable to decrease the time between damage and transplantation. In the cell administration phase, OEC survival and integration at the injury site, in particular migration into the glial scar, are the most critical factors, along with OEC-mediated phagocytosis of cellular debris. Finally, continuous support needs to be provided to the transplantation site to promote survival of both transplanted cells and endogenous cells within injury site and to promote long-term integration of the transplanted cells and angiogenesis. In this review, we define the 3 phases of OEC transplantation into the injured spinal cord and the optimal cell behaviors required for each phase. Optimising functional outcomes of OEC transplantation can beachieved by modulation of cell behaviours with neurotrophins. We identify the key growthfactors that exhibit the strongest potential for optimizing the OEC phenotype required foreach phase.
  • 机译 嗅鞘细胞对脊髓的伤害
    摘要:Olfactory ensheathing cells (OECs) are glia reported to sustain the continuous axon extension and successful topographic targeting of the olfactory receptor neurons responsible for the sense of smell (olfaction). Due to this distinctive property, OECs have been trialed in human cell transplant therapies to assist in the repair of central nervous system injuries, particularly those of the spinal cord. Though many studies have reported neurological improvement, the therapy remains inconsistent and requires further improvement. Much of this variability stems from differing olfactory cell populations prior to transplantation into the injury site. While some studies have used purified cells, others have used unpurified transplants. Although both preparations have merits and faults, the latter increases the variability between transplants received by recipients. Without a robust purification procedure in OEC transplantation therapies, the full potential of OECs for spinal cord injury may not be realised.
  • 机译 通过胰岛观察到的受调节的细胞死亡移植
    摘要:Clinical islet transplantation effectively restores euglycemia and corrects glycosylated hemoglobin in labile type 1 diabetes mellitus (T1DM). Despite marked improvements in islet transplantation outcomes, acute islet cell death remains a substantial obstacle that compromises long-term engraftment outcomes. Multiple organ donors are routinely required to achieve insulin independence. Therapeutic agents that ameliorate cell death and/or control injury-related inflammatory cascades offer potential to improve islet transplant success. Apoptotic cell death has been identified as a major contributor to cellular demise and therapeutic strategies that subvert initiation and consequences of apoptotic cell death have shown promise in pre-clinical models. Indeed, in numerous pathologies and diseases apoptosis has been the most extensively described form of regulated cell death. However, recent identification of novel, alternative regulated cell death pathways in other disease states and solid organ transplantation suggest that these additional pathways may also have substantial relevance in islet transplantation. These regulated, non-apoptotic cell death pathways exhibit distinct biochemical characteristics but have yet to be fully characterized within islet transplantation. We review herein the various regulated cell death pathways and highlight their relative potential contributions to islet viability, engraftment failure and islet dysfunction.
  • 机译 胰管分泌的α细胞水平升高。体重指数低且患有慢性胰腺炎的患者
    摘要:Chronic pancreatitis (CP) is an inflammatory disease that causes progressive damage to the pancreatic parenchyma with irreversible morphological changes and fibrotic replacement of the gland. The risk factors associated with developing CP have been described as toxic (e.g., alcohol and tobacco); idiopathic (e.g., unknown); genetic, autoimmune, recurrent acute pancreatitis, and obstructive (the TIGAR-O system). Upon histological screening of the pancreata from a cohort of CP patients who had undergone pancreatectomy for the treatment of intractable pain in Leicester, UK, one sample showed a striking change in the morphological balance toward an endocrine phenotype, most notably there was evidence of substantial α cell genesis enveloping entire cross sections of ductal epithelium and the presence of α cells within the ductal lumens. This patient had previously undergone a partial pancreatectomy, had severe sclerosing CP, an exceptionally low body mass index (15.2), and diabetes at the time the pancreas was removed, and although these factors have been shown to induce tissue remodeling, such high levels of α cells was an unusual finding within our series of patients. Due to the fact that α cells have been shown to be the first endocrine cell type that emerges during islet neogenesis, future research profiling the factors that caused such marked α cell genesis may prove useful in the field of islet transplantation.
  • 机译 急性完全性脊髓损伤患者的显着改善通过植入神经再生支架和间充质干细胞的联合标准进行诊断。细胞
    摘要:Stem cells and biomaterials transplantation hold a promising treatment for functional recovery in spinal cord injury (SCI) animal models. However, the functional recovery of complete SCI patients was still a huge challenge in clinic. Additionally, there is no clinical standard procedure available to diagnose precisely an acute patient as complete SCI. Here, two acute SCI patients, with injury at thoracic 11 (T11) and cervical 4 (C4) level respectively, were judged as complete injury by a stricter method combined with American Spinal Injury Association (ASIA) Impairment Scale, magnetic resonance imaging (MRI) and nerve electrophysiology. Collagen scaffolds, named NeuroRegen scaffolds, with human umbilical cord mesenchymal stem cells (MSCs) were transplanted into the injury site. During 1 year follow up, no obvious adverse symptoms related to the functional scaffolds implantation were found after treatment. The recovery of the sensory and motor functions was observed in the two patients. The sensory level expanded below the injury level, and the patients regained the sense function in bowel and bladder. The thoracic SCI patient could walk voluntary with the hip under the help of brace. The cervical SCI patient could raise his lower legs against the gravity in the wheelchair and shake his toes under control. The injury status of the two patients was improved from ASIA A complete injury to ASIA C incomplete injury. Furthermore, the improvement of sensory and motor functions wasaccompanied with the recovery of the interrupted neural conduction. These results showedthat the supraspinal control of movements below the injury was regained by functionalscaffolds implantation in the two patients who were judged as the complete injury withcombined criteria, it suggested that functional scaffolds transplantation could serve asan effective treatment for acute complete SCI patients.
  • 机译 骨髓CD133 +干细胞改善了人的视觉功能障碍链脲佐菌素诱导的糖尿病性糖尿病视网膜病变小鼠
    摘要:Diabetic retinopathy (DR), one of the leading causes of vision loss worldwide, is characterized by neurovascular disorders. Emerging evidence has demonstrated retinal neurodegeneration in the early pathogenesis of DR, and no treatment has been developed to prevent the early neurodegenerative changes that precede detectable microvascular disorders. Bone marrow CD133+ stem cells with revascularization properties exhibit neuroregenerative potential. However, whether CD133+ cells can ameliorate the neurodegeneration at the early stage of DR remains unclear. In this study, mouse bone marrow CD133+ stem cells were immunomagnetically isolated and analyzed for the phenotypic characteristics, capacity for neural differentiation, and gene expression of neurotrophic factors. After being labeled with enhanced green fluorescent protein, CD133+ cells were intravitreally transplanted into streptozotocin (STZ)-induced diabetic mice to assess the outcomes of visual function and retina structure and the mechanism underlying the therapeutic effect. We found that CD133+ cells co-expressed typical hematopoietic/endothelial stem/progenitor phenotypes, could differentiate to neural lineage cells, and expressed genes of robust neurotrophic factors in vitro. Functional analysis demonstrated that the transplantation of CD133+ cells prevented visual dysfunction for 56 days. Histological analysis confirmed such afunctional improvement and showed that transplanted CD133+ cells survived,migrated into the inner retina (IR) over time and preserved IR degeneration, includingretina ganglion cells (RGCs) and rod-on bipolar cells. In addition, a subset oftransplanted CD133+ cells in the ganglion cell layer differentiated to expressRGC markers in STZ-induced diabetic retina. Moreover, transplanted CD133+ cellsexpressed brain-derived neurotrophic factors (BDNFs) in vivo and increased the BDNF levelin STZ-induced diabetic retina to support the survival of retinal cells. Based on thesefindings, we suggest that transplantation of bone marrow CD133+ stem cellsrepresents a novel approach to ameliorate visual dysfunction and the underlying IRneurodegeneration at the early stage of DR.
  • 机译 成年人骨髓间质基质的胰岛素产生细胞细胞可以控制狗的化学诱导型糖尿病
    摘要:Ten mongrel dogs were used in this study. Diabetes was chemically induced in 7 dogs, and 3 dogs served as normal controls. For each diabetic dog, 5 million human bone marrow–derived mesenchymal stem cells/kg were differentiated to form insulin-producing cells using a trichostatin-based protocol. Cells were then loaded in 2 TheraCyte capsules which were transplanted under the rectus sheath. One dog died 4 d postoperatively from pneumonia. Six dogs were followed up with for 6 to 18 mo. Euglycemia was achieved in 4 dogs. Their glucose tolerance curves exhibited a normal pattern demonstrating that the encapsulated cells were glucose sensitive and insulin responsive. In the remaining 2 dogs, the fasting blood sugar levels were reduced but did not reach normal values. The sera of all transplanted dogs contained human insulin and C-peptide with a negligible amount of canine insulin. Removal of the transplanted capsules was followed by prompt return of diabetes. Intracytoplasmic insulin granules were seen by immunofluorescence in cells from the harvested capsules. Furthermore, all pancreatic endocrine genes were expressed. This study demonstrated that the TheraCyte capsule or a similar device can provide adequate immunoisolation, an important issue when stem cells are considered for the treatment of type 1 diabetes mellitus.
  • 机译 内皮祖细胞的生物工程改善了血管移植人类胰岛的植入
    摘要:Pancreatic islets isolated for transplantation are disconnected from their vascular supply and need to establish a new functional network posttransplantation. Due to poor revascularization, prevailing hypoxia with correlating increased apoptosis rates in experimental studies can be observed for months posttransplantation. Endothelial progenitor cells (EPCs) are bone marrow–derived cells that promote neovascularization. The present study tested the hypothesis that EPCs, isolated from human umbilical cord blood, could be coated to human islet surfaces and be used to promote islet vascular engraftment. Control or EPC bioengineered human islets were transplanted into the renal subcapsular space of nonobese diabetic/severe combined immunodeficiency mice. Four weeks posttransplantation, graft blood perfusion and oxygen tension were measured using laser Doppler flowmetry and Clark microelectrodes, respectively. Vessel functionality was also assessed by in vivo confocal imaging. The vascular density and the respective contribution of human and recipient endothelium were assessed immunohistochemically by staining for human and mouse CD31. Islet grafts with EPCs had substantially higher blood perfusion and oxygen tension than control transplants. Furthermore, analysis of the vascular network of the grafts revealed that grafts containing EPC bioengineered islets had a superior vascular density compared with control grafts, with functional chimeric blood vessels. Weconclude that a simple procedure of surface coating with EPCs provides a possibility toimprove the vascular engraftment of transplanted human islets. Established protocols arealso easily applicable for intraportal islet transplantation in order to obtain a noveldirected cellular therapy at the site of implantation in the liver.
  • 机译 颊上皮细胞的鉴定和体外扩增细胞
    摘要:Ex vivo-expanded buccal mucosal epithelial (BME) cell transplantation has been used to reconstruct the ocular surface. Methods for enrichment and maintenance of BME progenitor cells in ex vivo cultures may improve the outcome of BME cell transplantation. However, the parameter of cell seeding density in this context has largely been neglected. This study investigates how varying cell seeding density influences BME cell proliferation and differentiation on tissue culture polystyrene (TCPS). The highest cell proliferation activity was seen when cells were seeded at 5×104 cells/cm2. Both below and above this density, the cell proliferation rate decreased sharply. Differential immunofluorescence analysis of surface markers associated with the BME progenitor cell population (p63, CK19, and ABCG2), the differentiated cell marker CK10 and connexin 50 (Cx50) revealed that the initial cell seeding density also significantly affected the progenitor cell marker expression profile. Hence, this study demonstrates that seeding density has a profound effect on the proliferation and differentiation of BME stem cells in vitro, and this is relevant to downstream cell therapy applications.
  • 机译 牙龈间充质干细胞优于单倍牙源性牙髓间充质干细胞的增殖率,迁移能力和血管生成。潜在
    摘要:High donor variation makes comparison studies between different dental sources dubious. Dental tissues offer a rare opportunity for comparing the biological characteristics of haploidentical mesenchymal stem cells (MSCs) isolated from the same donor. The objective was to identify the optimal dental source of MSCs through a biological and functional comparison of haploidentical MSCs from gingival (GMSCs) and dental pulp stem cells (DPSCs) focusing mainly on their angiogenic potential. The comparison study included (1) surface markers expression, (2) mesodermal differentiation capacity (chondrogenic, adipogenic, and osteogenic), (3) proliferation, (4) migration potential, (5) ability to form colony units, and (6) angiogenic potential in vitro and in vivo. Comparative analysis showed no difference in the immunophenotypic profile nor for the trilineage differentiation potential. Proliferation of GMSCs was higher than DPSCs at day 6 (2.6-fold higher, P < 0.05). GMSCs showed superior migratory capacity compared to DPSCs at 4, 8, and 12 h (2.1-, 1.5-, and 1.2-fold higher, respectively, P < 0.05). Furthermore, GMSCs formed a higher number of colony units for both cell concentrations (1.7- and 1.4-fold higher for 150 and 250 starting cells, respectively, P < 0.05). GMSCs showed an improved angiogenic capacity compared to DPSCs (total tube lengths 1.17-fold higher and 1.5-fold total loops, P< 0.05). This was correlated with an enhanced release of vascular growth factor underhypoxic conditions. Finally, in the plug transplantation assay evaluating the angiogenesisin vivo, the DPSC and GMSC hemoglobin content was 3.9- and 4-fold higher, respectively,when compared to the control (Matrigel alone). GMSCs were superior to their haploidenticalDPSCs in proliferation, migration, and angiogenic potentials. This study positions GMSCsin the forefront of dental cell sources for applications in regenerative medicine.
  • 机译 人类多系分化应激持久细胞发挥多效性。对减轻大鼠急性肺缺血再灌注损伤的作用模型
    摘要:Posttransplantation lung ischemia–reperfusion (IR) injuries affect both patient survival and graft function. In this study, we evaluated the protective effects of infused human multilineage-differentiating stress-enduring (Muse) cells, a novel, easily harvested type of nontumorigenic endogenous reparative stem cell, against acute IR lung injury in a rat model. After a 2-h warm IR injury induction in a left rat lung, human Muse cells, human mesenchymal stem cells (MSCs), and vehicle were injected via the left pulmonary artery after reperfusion. Functionality, histological findings, and protein expression were subsequently assessed in the injured lung. In vitro, we also compared human Muse cells with human MSCs in terms of migration abilities and the secretory properties of protective substances. The arterial oxygen partial pressure to fractional inspired oxygen ratio, alveolar-arterial oxygen gradient, left lung compliance, and histological injury score on hematoxylin–eosin sections were significantly better in the Muse group relative to the MSC and vehicle groups. Compared to MSCs, human Muse cells homed more efficiently to the injured lung, where they suppressed the apoptosis and stimulated proliferation of host alveolar cells. Human Muse cells also migrated to serum from lung-injured model rats and produced beneficial substances (keratinocyte growth factor [KGF], hepatocyte growth factor, angiopoietin-1, and prostaglandin E2) in vitro. Western blot of lung tissueconfirmed high expression of KGF and their target molecules (interleukin-6, protein kinaseB, and B-cell lymphoma-2) in the Muse group. Thus, Muse cells efficiently ameliorated lungIR injury via pleiotropic effects in a rat model. These findings support furtherinvestigation on the use of human Muse cells for lung IR injury.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号