首页> 美国卫生研究院文献>Cell Regulation >The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement
【2h】

The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement

机译:Ndc80复合体使用三重连接点将微管解聚与染色体运动耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In kinetochores, the Ndc80 complex couples the energy in a depolymerizing microtubule to perform the work of moving chromosomes. The complex directly binds microtubules using an unstructured, positively charged N-terminal tail located on Hec1/Ndc80. Hec1/Ndc80 also contains a calponin homology domain (CHD) that increases its affinity for microtubules in vitro, yet whether it is required in cells and how the tail and CHD work together are critical unanswered questions. Human kinetochores containing Hec1/Ndc80 with point mutations in the CHD fail to align chromosomes or form productive microtubule attachments. Kinetochore architecture and spindle checkpoint protein recruitment are unaffected in these mutants, and the loss of CHD function cannot be rescued by removing Aurora B sites from the tail. The interaction between the Hec1/Ndc80 CHD and a microtubule is facilitated by positively charged amino acids on two separate regions of the CHD, and both are required for kinetochores to make stable attachments to microtubules. Chromosome congression in cells also requires positive charge on the Hec1 tail to facilitate microtubule contact. In vitro binding data suggest that charge on the tail regulates attachment by directly increasing microtubule affinity as well as driving cooperative binding of the CHD. These data argue that in vertebrates there is a tripartite attachment point facilitating the interaction between Hec1/Ndc80 and microtubules. We discuss how such a complex microtubule-binding interface may facilitate the coupling of depolymerization to chromosome movement.
机译:在动植物中,Ndc80复合物在解聚的微管中耦合能量以执行移动染色体的工作。该复合物使用位于Hec1 / Ndc80上的无结构,带正电的N末端尾巴直接结合微管。 Hec1 / Ndc80还包含一个钙离子蛋白同源结构域(CHD),可增加其对体外微管的亲和力,但细胞中是否需要它以及尾巴和CHD如何协同工作是尚未解决的关键问题。冠心病中含有带有点突变的Hec1 / Ndc80的人类动植物无法对齐染色体或形成有效的微管附件。线粒体结构和纺锤体检查点蛋白募集在这些突变体中不受影响,并且不能通过从尾部去除Aurora B位点来挽救CHD功能丧失。通过在CHD的两个独立区域上带正电荷的氨基酸,可以促进Hec1 / Ndc80 CHD与微管之间的相互作用,并且动植物都需要将两者都稳定地附着在微管上。细胞中的染色体国会还要求Hec1尾部带正电荷,以促进微管接触。体外结合数据表明,尾巴上的电荷通过直接增加微管亲和力和驱动CHD的协同结合来调节附着。这些数据表明,在脊椎动物中存在一个三方附着点,促进了Hec1 / Ndc80与微管之间的相互作用。我们讨论了这种复杂的微管结合界面如何促进解聚与染色体运动的耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号