首页> 美国卫生研究院文献>Cardiovascular Diseases >INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART
【2h】

INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART

机译:放射性同位素人工心脏的胸膜内散热

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200°F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12°C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 × 10−3 watt/cm2°C in the abdomen compared to a value of 14.9 × 10−3 watt/cm2°C from the heat exchanger plenum into the diaphragm.
机译:以放射性同位素为燃料的循环支持系统的可行性取决于人体消散来自驱动血泵的动力源的废热以及耐受慢性体内辐射的能力。我们的研究集中在使用循环血液作为散热器。最初的体内传热研究利用直管式换热器(通过电和放射性同位素供电)替换降主动脉的一部分。最近的研究已经使用左心室辅助泵作为血液冷却的热交换器。这种方法最大程度地减少了创伤,不增加与血液的假体界面面积,并使系统体积最小化。从热力发动机排出的热量(蒸汽或气体循环)通过液压管路从腹部的核动力源传输到胸腔中的泵。真空箔绝缘和聚氨酯泡沫可保护邻近的组织免受燃料囊温度(900至1200°F)的影响。已使用模拟热系统(STS)研究了体内热管理问题,该系统近似于NHLI正在开发的核循环支持系统的排热和热传输机制。电加热器模拟来自热力发动机的废热。这些研究对于在小牛中植入原型核心脏辅助系统的位置,悬挂,手术程序和术后护理至关重要。泵的热阻抗为0.12°C /瓦。根据电模拟模型对STS数据进行分析表明,与值相比,腹部的传热系数为4.7×10 -3 watt / cm 2 °C从换热室进入隔膜的温度为14.9×10 −3 watt / cm 2 °C。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号