您现在的位置:首页>美国卫生研究院文献>Briefings in Functional Genomics

期刊信息

  • 期刊名称:

    -

  • 刊频: Six issues per year
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<3/8>
157条结果
  • 机译 T淋巴细胞发育中的表观遗传机制和发育选择层次
    摘要:Three interlocking problems in gene regulation are: how to explain genome-wide targeting of transcription factors in different cell types, how prior transcription factor action can establish an ‘epigenetic state’ that changes the options for future transcription factor action, and how directly a sequence of developmental decisions can be memorialized in a hierarchy of repression structures applied to key genes of the ‘paths not taken’. This review uses the finely staged process of T-cell lineage commitment as a test case in which to examine how changes in developmental status are reflected in changes in transcription factor expression, transcription factor binding distribution across genomic sites, and chromatin modification. These are evaluated in a framework of reciprocal effects of previous chromatin structure features on transcription factor access and of transcription factor binding on other factors and on future chromatin structure.
  • 机译 核重编程和癌症背景下的表观遗传记忆
    摘要:Epigenetic memory represents a natural mechanism whereby the identity of a cell is maintained through successive cell cycles, allowing the specification and maintenance of differentiation during development and in adult cells. Cancer is a loss or reversal of the stable differentiated state of adult cells and may be mediated in part by epigenetic changes. The identity of somatic cells can also be reversed experimentally by nuclear reprogramming. Nuclear reprogramming experiments reveal the mechanisms required to activate embryonic gene expression in adult cells and thus provide insight into the reversal of epigenetic memory. In this article, we will introduce epigenetic memory and the mechanisms by which it may operate. We limit our discussion primarily to the context of nuclear reprogramming and briefly discuss the relevance of memory and reprogramming to cancer biology.
  • 机译 癌症相关异常CpG岛超甲基化的基因组学见解
    摘要:Carcinogenesis is thought to occur through a combination of mutational and epimutational events that disrupt key pathways regulating cellular growth and division. The DNA methylomes of cancer cells can exhibit two striking differences from normal cells; a global reduction of DNA methylation levels and the aberrant hypermethylation of some sequences, particularly CpG islands (CGIs). This aberrant hypermethylation is often invoked as a mechanism causing the transcriptional inactivation of tumour suppressor genes that directly drives the carcinogenic process. Here, we review our current understanding of this phenomenon, focusing on how global analysis of cancer methylomes indicates that most affected CGI genes are already silenced prior to aberrant hypermethylation during cancer development. We also discuss how genome-scale analyses of both normal and cancer cells have refined our understanding of the elusive mechanism(s) that may underpin aberrant CGI hypermethylation.
  • 机译 DNA损伤反应的动力学:活细胞成像的见解
    摘要:All organisms have to safeguard the integrity of their genome to prevent malfunctioning and oncogenic transformation. Sophisticated DNA damage response mechanisms have evolved to detect and repair genomic lesions. With the emergence of live-cell microscopy of individual cells, we now begin to appreciate the complex spatiotemporal kinetics of the DNA damage response and can address the causes and consequences of the heterogeneity in the responses of genetically identical cells. Here, we highlight key discoveries where live-cell imaging has provided unprecedented insights into how cells respond to DNA double-strand breaks and discuss the main challenges and promises in using this technique.
  • 机译 通过超分辨率条形码将单细胞变成微阵列
    • 作者:Long Cai*
    • 刊名:Briefings in Functional Genomics
    • -1年第2期
    摘要:In this review, we discuss a strategy to bring genomics and proteomics into single cells by super-resolution microscopy. The basis for this new approach are the following: given the 10 nm resolution of a super-resolution microscope and a typical cell with a size of (10 µm)3, individual cells contain effectively 109 super-resolution pixels or bits of information. Most eukaryotic cells have 104 genes and cellular abundances of 10–100 copies per transcript. Thus, under a super-resolution microscope, an individual cell has 1000 times more pixel volume or information capacities than is needed to encode all transcripts within that cell. Individual species of mRNA can be uniquely identified by labeling them each with a distinct combination of fluorophores by fluorescence in situ hybridization. With at least 15 fluorophores available in super-resolution, hundreds of genes in can be barcoded with a three-color barcode (3C15 = 455). These calculations suggest that by combining super-resolution microscopy and barcode labeling, single cells can be turned into informatics platforms denser than microarrays and that molecular species in individual cells can be profiled in a massively parallel fashion.
  • 机译 通过表观遗传重编程恢复全能
    摘要:Epigenetic modifications are implicated in the maintenance and regulation of transcriptional memory by marking genes that were previously transcribed to facilitate transmission of these expression patterns through cell division. During germline specification and maintenance, extensive epigenetic modifications are acquired. Yet somehow at fertilization, the fusion of the highly differentiated sperm and egg results in formation of the totipotent zygote. This massive change in cell fate implies that the selective erasure and maintenance of epigenetic modifications at fertilization may be critical for the re-establishment of totipotency. In this review, we discuss recent studies that provide insight into the extensive epigenetic reprogramming that occurs around fertilization and the mechanisms that may be involved in the re-establishment of totipotency in the embryo.
  • 机译 解释调节基因组:果蝇中转录因子功能的基因组学
    摘要:Researchers have now had access to the fully sequenced Drosophila melanogaster genome for over a decade, and the sequenced genomes of 11 additional Drosophila species have been available for almost 5 years, with more species’ genomes becoming available every year [Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science 2000;>287:2185–95; Clark AG, Eisen MB, Smith DR, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007;>450:203–18]. Although the best studied of the D. melanogaster transcription factors (TFs) were cloned before sequencing of the genome, the availability of sequence data promised to transform our understanding of TFs and gene regulatory networks. Sequenced genomes have allowed researchers to generate tools for high-throughput characterization of gene expression levels, genome-wide TF localization and analyses of evolutionary constraints on DNA elements across multiple species. With an estimated 700 DNA-binding proteins in the Drosophila genome, it will be many years before each potential sequence-specific TF is studied in detail, yet the last decade of functional genomics research has already impacted our view of gene regulatory networks and TF DNA recognition.
  • 机译 果蝇基因组学调控RNA
    • 作者:Antonio Marco*
    • 刊名:Briefings in Functional Genomics
    • -1年第5期
    摘要:Many aspects of gene regulation are mediated by RNA molecules. However, regulatory RNAs have remained elusive until very recently. At least three types of small regulatory RNAs have been characterized in Drosophila: microRNAs (miRNAs), piwi-interacting RNAs and endogenous siRNAs. A fourth class of regulatory RNAs includes known long non-coding RNAs such as roX1 or bxd. The initial sequencing of the Drosophila melanogaster genome has served as a scaffold to study the transcriptional profile of an animal, revealing the complexities of the function and biogenesis of regulatory RNAs. The comparative analysis of 12 Drosophila genomes has been crucial for the study of microRNA evolution. However, comparative genomics of other RNA regulators is confounded by technical problems: genomic loci are poorly conserved and frequently encoded in the heterochromatin. Future developments in genome sequencing and population genomics in Drosophila will continue to shed light on the conservation, evolution and function of regulatory RNAs.
  • 机译 两栖动物的基因组代表多少个脊索动物?
    摘要:One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.
  • 机译 用于下一代测序的目标基因组DNA区域富集
    摘要:In this review, we discuss the latest targeted enrichment methods and aspects of their utilization along with second-generation sequencing for complex genome analysis. In doing so, we provide an overview of issues involved in detecting genetic variation, for which targeted enrichment has become a powerful tool. We explain how targeted enrichment for next-generation sequencing has made great progress in terms of methodology, ease of use and applicability, but emphasize the remaining challenges such as the lack of even coverage across targeted regions. Costs are also considered versus the alternative of whole-genome sequencing which is becoming ever more affordable. We conclude that targeted enrichment is likely to be the most economical option for many years to come in a range of settings.
  • 机译 在人类疾病及其动物模型中表型知识的表示和分析的新方法
    摘要:The systematic investigation of the phenotypes associated with genotypes in model organisms holds the promise of revealing genotype–phenotype relations directly and without additional, intermediate inferences. Large-scale projects are now underway to catalog the complete phenome of a species, notably the mouse. With the increasing amount of phenotype information becoming available, a major challenge that biology faces today is the systematic analysis of this information and the translation of research results across species and into an improved understanding of human disease. The challenge is to integrate and combine phenotype descriptions within a species and to systematically relate them to phenotype descriptions in other species, in order to form a comprehensive understanding of the relations between those phenotypes and the genotypes involved in human disease. We distinguish between two major approaches for comparative phenotype analyses: the first relies on evolutionary relations to bridge the species gap, while the other approach compares phenotypes directly. In particular, the direct comparison of phenotypes relies heavily on the quality and coherence of phenotype and disease databases. We discuss major achievements and future challenges for these databases in light of their potential to contribute to the understanding of the molecular mechanisms underlying human disease. In particular, we discuss how the use of ontologies and automated reasoning can significantly contribute to the analysis of phenotypes and demonstrate their potential for enabling translational research.
  • 机译 在后基因组世界中的果蝇RNAi筛选
    • 作者:Chris Bakal
    • 刊名:Briefings in Functional Genomics
    • -1年第4期
    摘要:Drosophila melanogaster has a long history as a model organism with several unique features that make it an ideal research tool for the study of the relationship between genotype and phenotype. Importantly fundamental genetic principles as well as key human disease genes have been uncovered through the use of Drosophila. The contribution of the fruit fly to science and medicine continues in the postgenomic era as cell-based Drosophila RNAi screens are a cost-effective and scalable enabling technology that can be used to quantify the contribution of different genes to diverse cellular processes. Drosophila high-throughput screens can also be used as integral part of systems-level approaches to describe the architecture and dynamics of cellular networks.
  • 机译 秀丽隐杆线虫中微小RNA功能分析的分子工具箱
    摘要:With the growing number of microRNAs (miRNAs) being identified each year, more innovative molecular tools are required to efficiently characterize these small RNAs in living animal systems. Caenorhabditis elegans is a powerful model to study how miRNAs regulate gene expression and control diverse biological processes during development and in the adult. Genetic strategies such as large-scale miRNA deletion studies in nematodes have been used with limited success since the majority of miRNA genes do not exhibit phenotypes when individually mutated. Recent work has indicated that miRNAs function in complex regulatory networks with other small RNAs and protein-coding genes, and therefore the challenge will be to uncover these functional redundancies. The use of miRNA inhibitors such as synthetic antisense 2′-O-methyl oligoribonucleotides is emerging as a promising in vivo approach to dissect out the intricacies of miRNA regulation.
  • 机译 染色质无处不在
    摘要:
  • 机译 DNA复制和染色质结构启动的基因组方法揭示了复杂的关系
    摘要:The mechanisms regulating the coordinate activation of tens of thousands of replication origins in multicellular organisms remain poorly explored. Recent advances in genomics have provided valuable information about the sites at which DNA replication is initiated and the selection mechanisms of specific sites in both yeast and vertebrates. Studies in yeast have advanced to the point that it is now possible to develop convincing models for origin selection. A general model has emerged, but yeast data have also revealed an unsuspected diversity of strategies for origin positioning. We focus here on the ways in which chromatin structure may affect the formation of pre-replication complexes, a prerequisite for origin activation. We also discuss the need to exercise caution when trying to extrapolate yeast models directly to more complex vertebrate genomes.
  • 机译 聊天哺乳动物中的组蛋白修饰
    摘要:Eukaryotic chromatin can be highly dynamic and can continuously exchange between an open transcriptionally active conformation and a compacted silenced one. Post-translational modifications of histones have a pivotal role in regulating chromatin states, thus influencing all chromatin dependent processes. Methylation is currently one of the best characterized histone modification and occurs on arginine and lysine residues. Histone methylation can regulate other modifications (e.g. acetylation, phosphorylation and ubiquitination) in order to define a precise functional chromatin environment. In this review we focus on histone methylation and demethylation, as well as on the enzymes responsible for setting these marks. In particular we are describing novel concepts on the interdependence of histone modifications marks and discussing the molecular mechanisms governing this cross-talks.
  • 机译 白血病表观遗传修饰的动力学
    摘要:Chromatin modifications at both histones and DNA are critical for regulating gene expression. Mis-regulation of such epigenetic marks can lead to pathological states; indeed, cancer affecting the hematopoietic system is frequently linked to epigenetic abnormalities. Here, we discuss the different types of modifications and their general impact on transcription, as well as the polycomb group of proteins, which effect transcriptional repression and are often mis-regulated. Further, we discuss how chromosomal translocations leading to fusion proteins can aberrantly regulate gene transcription through chromatin modifications within the hematopoietic system. PML–RARa, AML1–ETO and MLL-fusions are examples of fusion proteins that mis-regulate epigenetic modifications (either directly or indirectly), which can lead to acute myeloblastic leukemia (AML). An in-depth understanding of the mechanisms behind the mis-regulation of epigenetic modifications that lead to the development and progression of AMLs could be critical for designing effective treatments.
  • 机译 处理和分析ChIP-seq数据:从简短阅读到监管互动
    摘要:Chromatin-immunoprecipitation and sequencing (ChIP-seq) is a rapidly maturing technology that draws on the power of high-throughput short-read sequencing to decipher chromatin states with unprecedented precision and breadth. Although some aspects of the experimental protocol require careful tuning, the bottleneck currently firmly lies with the downstream data analysis. We give an overview of the better-established aspects of genome mapping and data normalization and we describe the more recent progress in peak calling and their statistical analysis and provide a brief overview of popular follow-up analyses such as genomic feature categorization and motif search.
  • 机译 研究转录因子-DNA结合特异性的实验策略
    摘要:Specific binding of transcription factors (TFs) determines in a large part the connectivity of gene regulatory networks as well as the quantitative level of gene expression. A multiplicity of both experimental and computational methods is currently used to discover and characterize the underlying TF–DNA interactions. Experimental methods can be further subdivided into in vitro- and in vivo-based approaches, each accenting different aspects of TF-binding events. In this review we summarize the flexibility and performance of a selection of both types of experimental methods. In conclusion, we argue that a serial combination of methods with different throughput and data type constitutes an optimal experimental strategy.
  • 机译 鉴定和解决伪影的基因表达解释
    摘要:Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号