首页> 美国卫生研究院文献>Brain Behavior and Evolution >Evo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis
【2h】

Evo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis

机译:Evo-devo和灵长类动物等皮质:神经发生的固有梯度的中心组织作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spatial gradients in the initiation and termination of basic processes, such as cytogenesis, cell-type specification and dendritic maturation are ubiquitous in developing nervous systems. Such gradients can produce a niche adaptation in a particular species. For example, the high density of photoreceptors and neurons in the “area centralis” of some vertebrate retinas result from the early maturation of its center relative to its periphery. Across species, regularities in allometric scaling of brain regions can derive from conserved spatial gradients: longer neurogenesis in the alar versus the basal plate of the neural tube is associated with relatively greater expansion of alar plate derivatives in larger brains. We describe gradients of neurogenesis within the isocortex and their effects on adult cytoarchitecture within and across species. Longer duration of neurogenesis in the caudal isocortex is associated with increased neuron number and density per column relative to the rostral isocortex. Later-maturing features of single neurons, such as soma size and dendritic spine numbers reflect this gradient. Considering rodents and primates, the longer duration of isocortical neurogenesis in each species, the greater the rostral-to-caudal difference in neuron number and density per column. Extended developmental duration produces substantial, predictable changes in the architecture of the isocortex in larger brains, and presumably, a progressively changed functional organization whose properties we do not yet fully understand. Many features of isocortical architecture previously viewed as species- or niche-specific adaptations can now be integrated as the natural outcomes of spatiotemporal gradients that are deployed in larger brains.
机译:在发育过程的神经系统中,诸如细胞生成,细胞类型确定和树突成熟等基本过程的起始和终止中的空间梯度是普遍存在的。这样的梯度可以在特定物种中产生生态位适应。例如,某些脊椎动物视网膜的“中央区域”中高密度的感光细胞和神经元是由于其中心相对于其周边的早期成熟所致。在整个物种中,大脑区域的异度缩放比例的规律性可以源自保守的空间梯度:相对于神经管的基底板,阿拉尔相对于神经板的更长的神经发生与较大大脑中的阿拉尔板衍生物的相对更大的扩展有关。我们描述了等皮质内神经发生的梯度及其对物种内和物种间成年细胞结构的影响。相对于延髓等皮质,尾状皮质的神经发生时间更长与每列神经元数目和密度的增加有关。单个神经元的较晚成熟特征,例如躯体大小和树突棘数目反映了该梯度。考虑到啮齿动物和灵长类动物,每个物种中等皮质神经发生的持续时间越长,每列神经元数量和密度的鼻端到尾端差异越大。延长的发育持续时间会在较大的大脑中等皮质的结构中产生实质性的,可预测的变化,并且可能会导致其特性尚未完全了解的功能性组织逐渐变化。以前被视为物种或生态位适应的等皮质结构的许多特征现在可以整合为部署在较大大脑中的时空梯度的自然结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号