您现在的位置:首页>美国卫生研究院文献>Biomicrofluidics

期刊信息

  • 期刊名称:

    -

  • 刊频: Quarterly
  • NLM标题: Biomicrofluidics
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<9/20>
1461条结果
  • 机译 一种原位光交联微流体技术,可产生非球形,细胞相容性,可降解的单分散藻酸盐微凝胶,用于软骨细胞包封
    摘要:Alginate microgels are widely generated by ionic crosslinking methods, but this method has limitations in controlling the microgel degradation and generating non-spherical microgels. By employing oxidized methacrylated alginate (OMA) that is degradable and photocrosslinkable, we have successfully photocrosslinked monodisperse OMA microgels and demonstrated the feasibility to generate discoid alginate microgels. However, several technical issues obstructed our opto-microfluidic method from being a useful technique. Here, we further characterized and optimized this method. Monodisperse discoid OMA microgels with good shape consistency were, for the first time, generated. The curability of OMA microgels was characterized as the macromer concentration varied from 2% to 10%, and the minimum required photoinitiator (VA-086) concentrations were determined. The effects of crosslinking density and the presence of ions in the storage solution on swelling of OMA hydrogels were identified to give insights into accurate controlling of the microgel size. A much quicker degradation rate (within three weeks) compared to ionically crosslinked alginate hydrogels was indirectly identified by quantifying the elastic modulus using atomic force microscopy. The viability of encapsulated chondrocytes in OMA microgels formed by this method was higher than those from other existing methods, demonstrating its favorable cytocompatibility. It was found that the oxygen tension played a critical role in both the curability of microgels and the cytocompatibility of this technique. We also summarize common practical issues and provide related solutions and/or operational suggestions. By this method, OMA microgels are expected to be valuable alternatives to traditional ionically crosslinked alginate microgels in drug delivery, tissue engineering, and single cell analysis areas due to their multiple favorable properties.
  • 机译 钢增强复合有机硅膜及其与微流体充氧器,用于高性能气体交换
    摘要:Respiratory distress syndrome (RDS) is one of the main causes of fatality in newborn infants, particularly in neonates with low birth-weight. Commercial extracorporeal oxygenators have been used for low-birth-weight neonates in neonatal intensive care units. However, these oxygenators require high blood volumes to prime. In the last decade, microfluidics oxygenators using enriched oxygen have been developed for this purpose. Some of these oxygenators use thin polydimethylsiloxane (PDMS) membranes to facilitate gas exchange between the blood flowing in the microchannels and the ambient air outside. However, PDMS is elastic and the thin membranes exhibit significant deformation and delamination under pressure which alters the architecture of the devices causing poor oxygenation or device failure. Therefore, an alternate membrane with high stability, low deformation under pressure, and high gas exchange was desired. In this paper, we present a novel composite membrane consisting of an ultra-thin stainless-steel mesh embedded in PDMS, designed specifically for a microfluidic single oxygenator unit (SOU). In comparison to homogeneous PDMS membranes, this composite membrane demonstrated high stability, low deformation under pressure, and high gas exchange. In addition, a new design for oxygenator with sloping profile and tapered inlet configuration has been introduced to achieve the same gas exchange at lower pressure drops. SOUs were tested by bovine blood toevaluate gas exchange properties. Among all tested SOUs, the flat design SOU withcomposite membrane has the highest oxygen exchange of 40.32 ml/min m2. Thesuperior performance of the new device with composite membrane was demonstrated byconstructing a lung assist device (LAD) with a low priming volume of 10 ml. The LAD wasachieved by the oxygen uptake of 0.48–0.90 ml/min and the CO2 release of1.05–2.27 ml/min at blood flow rates ranging between 8 and 48 ml/min. This LAD was shownto increase the oxygen saturation level by 25% at the low pressure drop of 29 mm Hg.Finally, a piglet was used to test the gas exchange capacity of the LAD invivo. The animal experiment results were in accordance within-vitro results, which shows that the LAD is capable of providingsufficient gas exchange at a blood flow rate of ∼24 ml/min.
  • 机译 靠近表面的螺旋微型泵
    摘要:Recent experiments proposed to use confined bacteria in order to generate flows near surfaces. We develop a mathematical and a computational model of this fluid transport using a linear superposition of fundamental flow singularities. The rotation of a helical bacterial flagellum induces both a force and a torque on the surrounding fluid, both of which lead to a net flow along the surface. The combined flow is in general directed at an angle to the axis of the flagellar filament. The optimal pumping is thus achieved when bacteria are tilted with respect to the direction in which one wants to move the fluid, in good agreement with experimental results. We further investigate the optimal helical shapes to be used as micropumps near surfaces and show that bacterial flagella are nearly optimal, a result which could be relevant to the expansion of bacterial swarms.
  • 机译 使用H滤池和正介电电泳从高电导率和高粘度生理样品中直接富集病原体
    摘要:The full potential of microfluidic techniques as rapid and accurate methods for the detection of disease-causing agents and foodborne pathogens is critically limited by the complex sample preparation process, which commonly comprises the enrichment of bacterial cells to detectable levels. In this manuscript, we describe a microfluidic device which integrates H-filter desalination with positive dielectrophoresis (pDEP) for direct enrichment of bacterial cells from physiological samples of high conductivity and viscosity, such as cow's milk and whole human blood. The device contained a winding channel in which electrolytes in the samples continuously diffused into deionized (DI) water (desalination), while the bacterial cells remained in the samples. The length of the main channel was optimized by numerical simulation and experimentally evaluated by the diffusion of fluorescein into DI water. The effects of another three factors on H-filter desalination were also investigated, including (a) the flow rate ratio between the sample and DI water, (b) sample viscosity, and (c) non-Newtonian fluids. After H-filter desalination, the samples were withdrawn into the dielectrophoresis chamber in which the bacterial cells were captured by pDEP. The feasibility of the device was demonstrated by the direct capture of the bacterial cells in 1× PBS buffer, cow's milk, and whole human blood after H-filter desalination, with the capture efficiencies of 70.7%, 90.0%, and 80.2%, respectively. We believe that this simple method can be easily integrated into portable microfluidic diagnosis devices for rapid and accurate detection of disease-causing agents and foodborne pathogens.
  • 机译 设计用于动物凝血监测的简单侧向流动装置
    摘要:Increasing numbers of animals are diagnosed with thromboembolism, requiring anticoagulation treatment to prevent thrombotic events. Frequent and periodic coagulation monitoring is critical to ensure treatment effectiveness and patient safety by limiting blood coagulation ability within the desired therapeutic range. Point-of-care diagnostics is an ideal candidate for frequent coagulation monitoring due to rapid test results and no need for laboratory setting. This article reports the first utilization of no-reaction lateral flow assay (nrLFA) device for simple and low-cost animal blood coagulation monitoring in resource-limited setting. The nrLFA device consists of sample pad, analytical membrane and wicking pad, without conjugate pad, reagent printing or membrane drying. Citrated and heparinized animal blood were utilized to mimic different blood coagulation abilities in vitro by adding reversal agents CaCl2 and protamine sulfate. The travel distance of red blood cells (RBCs) on the nrLFA after a pre-determined test time serves as endpoint marker. Upon adding 500 mM CaCl2 solution to citrated bovine, canine, rabbit and equine blood, the average travel distance decreases from 10.9 to 9.4 mm, 8.8 to 5.7 mm, 12.6 to 9 mm, and 15.3 to 11.3 mm, respectively. For heparinized bovine and rabbit blood, the average distance decreases from 14.5 to 11.4 mm and from 9.8 to 7.2 mm, respectively, when adding 300 mg/l protamine sulfate solution. The effect of hematocrit on RBC travel distance in the nrLFA was also investigated. The nrLFA device will potentially improve treatment efficiency, patient safety, quality of life, and satisfaction for both animal patients and their owners.
  • 机译 使用硼酸衍生的琼脂糖珠在纸质设备上测定糖化白蛋白
    摘要:Self-monitoring of glycated albumin (GA), a useful glycemic marker, is an established method for preventing diabetes complications. Here, the paper-based lateral flow assay devices were developed for the sensitive detection of GA and the total human serum albumin (tHSA) in self-monitoring diabetes patients. Boronic acid-derived agarose beads were packed into a hole on a lateral flow channel. These well-coordinated agarose beads were used to capture GA through specific cis-diol interactions and to enhance the colorimetric signals by concentrating the target molecules. The devices exhibited large dynamic ranges (from 10 μg/ml to 10 mg/ml for GA and from 10 mg/ml to 50 mg/ml for tHSA) and low detection limits (7.1 μg/ml for GA and 4.7 mg/ml for tHSA), which cover the range of GA concentration in healthy plasma, which is 0.21–1.65 mg/ml (0.6%–3%). In determining the unknown GA concentrations in two commercial human plasma samples, the relative percentage difference between the values found by a standard ELISA kit and those found by our developed devices was 2.62% and 8.80%, which are within an acceptable range. The measurements of GA and tHSA were completed within 20 min for the total sample-to-answer diagnosis, fulfilling the demand for rapid analysis. Furthermore, the recovery values ranged from 99.4% to 110% in device accuracy tests. These results indicate that the developed paper-based device with boronic acid-derived agarose beads is a promising platform for GA and tHSA detection as applied to self-monitoring systems.
  • 机译 使用涡流微流分离癌细胞
    摘要:Label-free separation of viable cancer cells using vortical microfluidic flows has been introduced as a feasible cell collection method in oncological studies. Besides the clinical importance, the physics of particle interactions with the vortex that forms in a wall-confined geometry of a microchannel is a relatively new area of fluid dynamics. In our previous work [Haddadi and Di Carlo, J. Fluid. Mech. 811, 436–467 (2017)], we have introduced distinct aspects of inertial flow of dilute suspensions over cavities in a microchannel such as breakdown of the separatrix and formation of stable limit cycle orbits for finite size polystyrene particles. In this work, we extend our experiments to address the engineering-physics of cancer cell entrapment in microfluidic cavities. We begin by studying the effects of the channel width and device height on the morphology of the vortex, which has not been discussed in our previous work. The stable limit cycle orbits of finite size cancer cells are then presented. We demonstrate effects of the separatrix breakdown and the limit cycle formation on the operation of the cancer cell separation platform. By studying the flow of dilute cell suspensions over the cavities, we further develop the notion of the cavity capacity and the relative rate of cell accumulation as optimization criteria which connect the device geometry with the flow. Finally, we discuss the proper placement of multiple cavities inside a microchannel for improved cell entrapment.
  • 机译 用于研究斑马鱼幼虫的电出租车和多巴胺能系统的微流控装置
    摘要:The zebrafish is a lower vertebrate model organism offering multiple applications for both fundamental and biomedical research into the nervous system from genes to behaviour. Investigation of zebrafish larvae's movement in response to various stimuli, which involves the dopaminergic system, is of interest in the field of sensory-motor integration. Nevertheless, the conventional methods of movement screening in Petri dishes and multi-well plates are mostly qualitative, uncontrollable, and inaccurate in terms of stimulus delivery and response analysis. We recently presented a microfluidic device built as a versatile platform for fluid flow stimulation and high speed time-lapse imaging of rheotaxis behaviour of zebrafish larvae. Here, we describe for the first time that this microfluidic device can also be used to test zebrafish larvae's sense of the electric field and electrotaxis in a systemic manner. We further show that electrotaxis is correlated with the dopamine signalling pathway in a time of day dependent manner and by selectively involving the D2-like dopamine receptors. The primary outcomes of this research opens avenues to study the molecular and physiological basis of electrotaxis, the effects of known agonist and antagonist compounds on the dopaminergic system, and the screen of novel pharmacological tools in the context of neurodegenerative disorders. We propose that this microfluidic device has broad application potential, including the investigation of complex stimuli, biological pathways, behaviors, and brain disorders.
  • 机译 方形微通道中受限聚合物颗粒,囊泡和癌细胞的流体动力学迁移率
    摘要:The transport of deformable objects, including polymer particles, vesicles, and cells, has been a subject of interest for several decades where the majority of experimental and theoretical studies have been focused on circular tubes. Due to advances in microfluidics, there is a need to study the transport of individual deformable particles in rectangular microchannels where corner flows can be important. In this study, we report measurements of hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a linear microchannel with a square cross-section. Our operating conditions are such that the mobility is measured as a function of geometric confinement over the range 0.3 < λ < 1.5 and at specified particle Reynolds numbers that are within 0.1 < Rep < 2.5. The experimental mobility data of each of these systems is compared with the circular-tube theory of Hestroni, Haber, and Wacholder [J. Fluid Mech. 41, 689–705 (1970)] with modifications made for a square cross-section. For polymeric particles, we find that the mobility data agrees well over a large confinement range with the theory but under predicts for vesicles. The mobility of vesicles is higher in a square channel than in a circular tube, and does not depend significantly on membrane mechanical properties. The mobility of cancer cells is in good agreement with the theory up to λ ≈ 0.8, after which it deviates. Comparison of the mobility data of the three systems reveals that cancer cells have higher mobility than rigid particles but lower than vesicles, suggesting that the cell membrane frictional properties are in between a solid-like interface and a fluid bilayer. We explain further the differences in the mobility of the three systems by considering their shape deformation and surface flow on the interface. The results of this study may find potential applications in drug delivery and biomedical diagnostics.
  • 机译 微流控中非对称扑动的铁磁棒驱动惯性微型泵
    摘要:Even though microfluidics has been successfully used in minimizing complicated and onerous processes, the pumping and tubing systems used with it are yet undeveloped and need immediate development. The present study developed a fluttering bar-driven micropump, mounted on a polydimethylsiloxane microfluidic system. The pump consists of a rectangular ferromagnetic bar and a fan-shaped chamber with an inlet and outlet. Through various experiments, the net flow was examined as a function of chamber shape, inlet and outlet channel location, rotating center of the magnet, and rotational speed. Using high-speed camera and image analysis, the net flow was found to be generated by the fluid inertia associated with the varying reciprocating speeds of the bar inside the fan-shaped chamber. Depending on the locations of the inlet and outlet, the cycle time taken to circulate the loop was significantly reduced from 200 to 4 s. The flow rate of the micropump ranges from 48–225 μl/min, which is proportional to the rotational speed of the magnet (150–3000 rpm). Using a fluttering bar-driven inertial micropump, the microfluidic system not only provides improved mixing, but also eliminates certain problems associated with external tubing and connection.
  • 机译 几何形状增强的传感器表面,用于在层流场中选择性捕获细胞样颗粒
    摘要:Medical wires inserted into the blood stream of patients offer an attractive perspective to capture rare cells such as circulating tumor cells in vivo. A major challenge in such systems is to achieve an efficient interaction of the desired cells with the sensing surface and avoid those cells that simply flow by the wire without any contact while floating in a laminar flow field at some small distance to the sensor surface. We describe a new strategy to increase the interaction of cells or cell-like particles to such wire-shaped sensor surfaces both from an experimental and a theoretical point of view. For model experiments, we use cell-like particles that are flowing past the profile wire in a blood-like liquid stream. In the fluid dynamics simulations, this sensor is inserted into small capillaries. The influence of geometry and orientation of the wire with respect to the surrounding capillary onto the capture behavior is studied. Parameters, such as wire diameter, profile shape, wire torsion, and orientation of it with respect to the liquid stream, induce in some cases quite strong crossflows. These crossflows enhance the contact probability compared to a straight line wire of the same length by factors of up to about 80. A general model connecting the wire geometry with the crossflow intensity and the particle capture behavior is developed. Particle capture experiments demonstrate that the identified geometric factors can improve the capture of cell-like particles in laminar fluid flows and enhance the performance of such cell sensors.
  • 机译 勘误表:“基于微流控芯片的双流全人类人体组织研究模型” [Biomicrofluidics 10,064101(2016)]
    摘要:
  • 机译 血流动力学力的体外测量及其在亚细胞水平上对内皮细胞力学的影响
    摘要:This paper presents micro-particle tracking velocimetry measurements over cultured bovine aortic endothelial cell monolayers in microchannels. The objective was to quantify fluid forces and cell morphology at the sub-cellular scale for monolayers subjected to steady shear rates of 5, 10, and 20 dyn/cm . The ultimate goal of this study was to develop an experimental methodology for detailed study of physiologically realistic healthy and diseased conditions. Cell topography, shear stress, and pressure distributions were calculated from sets of velocity fields made in planes parallel to the microchannel wall. For each experiment, measurements were made in 3 h intervals for 18 h. It was found that there is a three-dimensional change in cell morphology as a result of applied shear stress. That is, cells flatten and become more wedge shaped in the stream direction while conserving volume by spreading laterally, i.e., in the cross-stream direction. These changes in cell morphology are directly related to local variations in fluid loading, i.e., shear stress and pressure. This paper describes the first flow measurements over a confluent layer of endothelial cells that are spatially resolved at the sub-cellular scale with a simultaneous temporal resolution to quantify the response of cells to fluid loading.
  • 机译 纸基免疫传感器,利用微探针的介电泳捕获,可通过电化学阻抗谱进行定量和无标记检测
    摘要:In this study, we have developed a novel paper based immunoassay for the quantitative detection of immunoreactions using electrochemical impedance spectroscopy. Paper provides an attractive platform for fabrication of simple, low cost, and portable diagnostic devices as it allows passive liquid transport, is biocompatible, and has tunable properties such as hydrophilicity, flexibility, permeability, and reactivity. We have used screen-printing to fabricate interdigitated electrodes (finger width and gap of 200  m) on the paper substrate, while UV-lithography enables patterning of the paper into hydrophobic/hydrophilic regions. As a proof of concept, we have used this immunosensor to detect the immune response of Human Serum Albumin (HSA) antibody-antigen complex formation. To enable efficient immobilization of HSA antibodies, we have utilized dielectrophoresis to trap microprobes (MPs) on the electrode surface. The microprobes consist of an alumina nanoparticle core with a well-adhered polyaniline outer coating to which the HSA antibodies are conjugated in an oriented manner via covalent chemistry. The efficacy of the impedance-based immunosensor is compared when MPs are immobilized specifically on the electrode surface using dielectrophoresis (DEP) as opposed to being dropped and immobilized via physical absorption on the entire sensing area. Results show that a more reproducible and sensitive response is observed when DEP is utilized to trap the microprobes. Furthermore, the normalized impedance variation during immunosensing shows a linear dependence on the concentration of HSA with an observed limit of detection of 50  g/ml, which is lower than conventionally used paper based urine dipsticks used for urinary protein detection. Thus, we have developed a low cost paper based immunoassay platform that can be used for the quantitative point of care detection of a wide range of immunoreactions.
  • 机译 柱辅助自组装微粒用于流体装置的纳米过滤器
    摘要:We present a nanofilter based on pillar-assisted self-assembly microparticles for efficient capture of bacteria. Under an optimized condition, we simply fill the arrays of microscale pillars with submicron scale polystyrene particles to create a filter with nanoscale pore diameter in the range of 308 nm. The design parameters such as the pillar diameter and the inter-pillar spacing in the range of 5  m-40  m are optimized using a multi-physics finite element analysis and computational study based on bi-directionally coupled laminar flow and particle tracking solvers. The underlying dynamics of microparticles accumulation in the pillar array region are thoroughly investigated by studying the pillar wall shear stress and the filter pore diameter. The impact of design parameters on the device characteristics such as microparticles entrapment efficiency, pressure drop, and inter-pillar flow velocity is studied. We confirm a bell-curve trend in the capture efficiency versus inter-pillar spacing. Accordingly, the 10  m inter-pillar spacing offers the highest capture capability (58.8%), with a decreasing entrapping trend for devices with larger inter-pillar spacing. This is the case that the 5  m inter-pillar spacing demonstrates the highest pillar wall shear stress limiting its entrapping efficiency. As a proof of concept, fluorescently labeled bacteria ( ) were captured using the proposed device. This device provides a simple design, robust operation, and ease of use. All of which are essential attributes for point of care devices.
  • 机译 基于微模板的单个细胞空间固定化,用于单细胞分析
    摘要:Cells exhibit biologically heterogeneous phenotypes, particularly in pathogenic states. To study cell behavior at the single cell level, a variety of micropatterning techniques have been proposed that allow the spatial organization of cells with great control over cell volume, morphology, and intercellular interactions. Among these strategies, microstencil patterning has traditionally been eschewed due to fragility of membranes and lack of control over cell configurations within patterns. Here, we present a simple and reproducible strategy to create robust microstencils and achieve consistent and efficient cell patterns requiring less than 4  l of cell solution. Polydimethylsiloxane microstencils fabricated with this technique can be used dozens of times over the course of several months with minimal wear or degradation. Characterization of pattern size, cell suspension density, and droplet volume allows on-demand configurations of singlets, doublets, triplets, or multiple cells per individual space. In addition, a novel technique to suppress evaporative convection provides precise and repeatable results, with a twofold increase in patterning efficacy. Selective dual surface modification to create hydrophilic islands on a hydrophobic substrate facilitates a significantly longer and healthier lifespan of cells without crossover of pattern boundaries. The ability to pattern individual cells with or without an extracellular matrix substrate and to control the magnitude of cell-cell contact as well as spread area provides a powerful approach to monitoring cell functions such as proliferation and intercellular signaling.
  • 机译 通过X射线照相术快速检测含氟聚合物微通道的原型,以提高耐溶剂性
    摘要:Microchannels made of fluoropolymers show potential merits due to their excellent solvent resistance, but such channels have not been widely used because of the complexity to fabricate them. This communication describes a method to prototype microfluidic devices using fluoropolymer films. The fabrication requires only two steps; cutting fluoropolymer films with a desktop cutting plotter and applying heat and pressure to laminate them. The method is rapid, simple, and low-cost. The conditions for heat press were identified for two common fluoropolymers: polytetrafluoroethylene and fluorinated ethylene propylene. The laminated films were confirmed to remain sealed with an internal pressure of at least 300 kPa. The fabricated devices were tested for the resistance to a set of organic solvents that would not be compatible with typical devices fabricated in polydimethylsiloxane. To highlight the potential of the fluoropolymer devices fabricated in this method, generation of droplets in a continuous stream of organic solvent using a T-junction channel was demonstrated. Our method offers a simple avenue to prototype microfluidic devices to conduct experiments involving organic solvents such as organic chemistry and in-channel synthesis of microparticles.
  • 机译 一步法微阵列分析法双向检测淋巴瘤细胞的图像特征并进行免疫标记
    摘要:Detecting the number of pathological lymphoma cells and lymphocyte subtypes in blood is helpful for clinical diagnosis and typing of lymphoma. In the current study, cell type is identified by cell morphological features and immunolabeled lymphocyte subtypes. Red blood cells and leukocytes were separated using a microfluidic cell chip based on physical blood cell parameters, and leukocytes were identified using five characteristic parameters: energy variance, entropy variance, moment of inertia variance, color mean, and cell area individually. The number of red blood cells that could come into contact with the leukocyte membrane was ≤2 based on the microfluidic injection flow rate of microfluidic chips. Anti-CD3 and anti-CD19 antibodies were used for immunofluorescence staining of T-lymphocyte and B-lymphocyte surface antigens, respectively. The results suggested that the microfluidic assay could detect lymphocyte surface antigen markers and intact leukocytes. Therefore, we report a one-step microfluidic chip for classifying hematological lymphoma cells based on the physical parameters of cells, which can simultaneously measure the overall morphology of blood cells and immunolabeling of lymphocyte surface antigens in one step, solving the current problem of detecting subtypes of hematological lymphoma cells based on multiple methods and multi-step detection.
  • 机译 通过μPAD和智能手机便携式检测空气中颗粒物和沉积物中的痕量金属
    摘要:Particulate matter (PM), a key indicator of air pollution by natural and anthropogenic activities, contributes to a wide spectrum of diseases that lead to a shortening of life expectancy. It has been recognized that trace metals in airborne PM are highly toxic and can be correlated with lesion in respiratory, gastrointestinal, immunological, and hematological systems. Traditional methods for trace metal assay require sophisticated instrumentations and highly trained operators in centralized laboratories. In this work, by integrating the technologies of microfluidic paper-based analytical devices, additive manufacturing, smartphone, and colorimetric sensing, we developed the first smartphone based paper microfluidic platform for portable, disposable, and quantitative measurements of cobalt (Co), copper (Cu), and iron (Fe) in ambient air and street sediments. On a single A4-sized paper, 48 devices were fabricated in under 30 s with a total cost of ∼$1.9. On each device, 12 reaction units were patterned and used for colorimetric tests. Particulate samples from urban ambient air and street sediments were collected, processed, and analyzed. Signals of the on-chip complexation product were recorded using a smartphone camera and processed by a self-developed app on an iOS system. For precisely controlling the object distance, chip position, and luminance, a hand-held 3D cellphone housing was designed and printed. The detection limits of Co, Cu, and Fe were determined to be 8.2, 45.8, and 186.0 ng, while the linear dynamic ranges were calculated to be 8.2–81.6, 45.8–4.58 × 102, and 1.86 × 102–1.86 × 103 ng, representing a practically relevant device performance with a significant reduction in the detection cost and time consumption. Trace metals in ambient air and sediments of two cities in China have been quantified portably, thus demonstrating the utility of our system in improving strategies for air pollution control in low-resource settings.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号