您现在的位置:首页>美国卫生研究院文献>Biology of Reproduction

期刊信息

  • 期刊名称:

    -

  • 刊频: Monthly
  • NLM标题: Biol Reprod
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<2/20>
1151条结果
  • 机译 WBP2与WBP2NL / PAWP在小鼠精子中共有一个共同的位置,并且其后代是候选的小鼠卵母细胞激活因子
    摘要:The sperm-borne oocyte-activating factor (SOAF) resides in the sperm perinuclear theca (PT). A consensus has been reached that SOAF most likely resides in the postacrosomal sheath (PAS), which is the first region of the PT to solubilize upon sperm–oocyte fusion. There are two SOAF candidates under consideration: PLCZ1 and WBP2NL. A mouse gene germline ablation of the latter showed that mice remain fertile with no observable phenotype despite the fact that a competitive inhibitor of WBP2NL, derived from its PPXY motif, blocks oocyte activation when coinjected with WBP2NL or spermatozoa. This suggested that the ortholog of WBP2NL, WBP2, containing the same domain and motifs associated with WBP2NL function, might compensate for its deficiency in oocyte activation. Our objectives were to examine whether WBP2 meets the developmental criteria established for SOAF and whether it has oocyte-activating potential. Immunoblotting detected WBP2 in mice testis and sperm and immunofluorescence localized WBP2 to the PAS and perforatorium of the PT. Immunohistochemistry of the testes revealed that WBP2 reactivity was highest in round spermatids and immunofluorescence detected WBP2 in the cytoplasmic lobe of elongating spermatids and colocalized it with the microtubular manchette during PT assembly. Microinjection of the recombinant forms of WBP2 and WBP2NL into metaphase II mouse oocytes resulted in comparable rates of oocyte activation. This study shows that WBP2 shares a similar testicular developmental pattern and location with WBP2NL and a shared ability to activate the oocyte, supporting its consideration as a mouse SOAF component that can compensate for a WBP2NL.
  • 机译 牛配子和体内产生的植入前胚胎的DNA甲基化组
    摘要:DNA methylation is an important epigenetic modification that undergoes dynamic changes in mammalian embryogenesis, during which both parental genomes are reprogrammed. Despite the many immunostaining studies that have assessed global methylation, the gene-specific DNA methylation patterns in bovine preimplantation embryos are unknown. Using reduced representation bisulfite sequencing, we determined genome-scale DNA methylation of bovine sperm and individual in vivo developed oocytes and preimplantation embryos. We show that (1) the major wave of genome-wide demethylation was completed by the 8-cell stage; (2) promoter methylation was significantly and inversely correlated with gene expression at the 8-cell and blastocyst stages; (3) sperm and oocytes have numerous differentially methylated regions (DMRs)—DMRs specific for sperm were strongly enriched in long terminal repeats and rapidly lost methylation in embryos; while the oocyte-specific DMRs were more frequently localized in exons and CpG islands (CGIs) and demethylated gradually across cleavage stages; (4) DMRs were also found between in vivo and in vitro matured oocytes; and (5) differential methylation between bovine gametes was confirmed in some but not all known imprinted genes. Our data provide insights into the complex epigenetic reprogramming of bovine early embryos, which serve as an important model for human preimplantation development.
  • 机译 自噬有助于低氧诱导子宫内膜异位症中的内膜上皮细胞向间质转化
    摘要:Endometriosis is a benign gynecologic disorder, and presents with malignant characteristics, such as migration and invasion. Hypoxia has been implicated in triggering epithelial–mesenchymal transition (EMT). Hypoxia is also known to induce autophagy. However, the relationship between autophagy and EMT under hypoxia conditions in endometriosis remains unknown. In the present study, we found that the expression of hypoxia-inducible factor-1α (HIF-1α), microtubule associated protein light chain 3 (LC3), and mesenchymal cell marker vimentin was significantly higher in ectopic endometrium from patients with endometriosis, along with decreased expression of epithelial cell marker E-cadherin. After hypoxia treatment, endometrial epithelial cells exhibited enhanced migration and invasion abilities, as well as promoted autophagy and the EMT phenotype. Our analyses also show that HIF-1α was responsible for induction of autophagy. Moreover, inhibition of autophagy by chemical or genetic approaches suppressed hypoxia triggered EMT and reduced cell migration and invasion. Collectively, our findings identify that autophagy is critical for the migration and invasion of endometrial cells through the induction of EMT and indicate that inhibition of autophagy may be a novel useful strategy in the treatment of endometriosis.
  • 机译 牙龈卟啉单胞菌菌株对妊娠大鼠子宫螺旋动脉重构的抑制作用
    摘要:Porphyromonas gingivalis (Pg) is an important periodontal pathogen that is also implicated in pregnancy complications involving defective deep placentation (DDP). We hypothesized that Pg invasion of the placental bed promotes DDP. Pregnant rats were intravenously inoculated with sterile vehicle, Pg strain W83, or A7436 at gestation day (GD) 14 (acute cohort). Nonpregnant rats received repeated oral inoculations for 3 months before breeding (chronic cohort). Tissues and/or sera were collected at GD18 for analysis. Pg infection status was determined by seroconversion (chronic cohort) and by presence of Pg antigen in utero-placental tissues processed for histology and morphometric assessment of spiral artery remodeling. Mesometrial tissues from seropositive dams were analyzed for expression of interleukin 1β, 6, and 10, TNF, TGF-β, follistatin-related protein 3, and inhibin beta A chain since these genes regulate extravillous trophoblast invasion. The in situ distribution of W83 and A7436 antigen in utero-placental tissues was similar in both cohorts. In the acute cohort, mesometrial stromal necrosis was more common with W83, but arteritis was more common with A7436 infection (P < 0.05). Increased vascular necrosis was seen in mesometrium of chronically infected groups (P < 0.05). Only A7436-infected animals had increased fetal deaths, reduced spiral artery remodeling, reduced inhibin beta A expression, and an increased proportion of FSLT3 positive extravillous trophoblasts within spiral arteries. While infection with both Pg strains produced varying pathology of the deep placental bed, only infection with strain A7436 resulted in impaired spiral artery remodeling.
  • 机译 垂体发育需要内在信号和外周信号的复杂整合
    摘要:The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.
  • 机译 父亲发展性毒物暴露与小鼠模型中精子和胎盘Pgr和Igf2的表观遗传调控有关
    摘要:Preterm birth (PTB), parturition prior to 37 weeks’ gestation, is the leading cause of neonatal mortality. The causes of spontaneous PTB are poorly understood; however, recent studies suggest that this condition may arise as a consequence of the parental fetal environment. Specifically, we previously demonstrated that developmental exposure of male mice (F1 animals) to the environmental endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was associated with reduced sperm quantity/quality in adulthood and control female partners frequently delivered preterm. Reproductive defects persisted in the F2 and F3 descendants, and spontaneous PTB was common. Reproductive changes in the F3 males, the first generation without direct TCDD exposure, suggest the occurrence of epigenetic alterations in the sperm, which have the potential to impact placental development. Herein, we conducted an epigenetic microarray analysis of control and F1 male-derived placentae, which identified 2171 differentially methylated regions, including the progesterone receptor (Pgr) and insulin-like growth factor (Igf2). To assess if Pgr and Igf2 DNA methylation changes were present in sperm and persist in future generations, we assessed methylation and expression of these genes in F1/F3 sperm and F3-derived placentae. Although alterations in methylation and gene expression were observed, in most tissues, only Pgr reached statistical significance. Despite the modest gene expression changes in Igf2, offspring of F1 and F3 males consistently exhibited IUGR. Taken together, our data indicate that paternal developmental TCDD exposure is associated with transgenerational placental dysfunction, suggesting epigenetic modifications within the sperm have occurred. An evaluation of additional genes and alternative epigenetic mechanisms is warranted.
  • 机译 鞭毛蛋白Enkurin是小鼠精子运动和通过雌性生殖道运输所必需的
    摘要:Enkurin was identified initially in mouse sperm where it was suggested to act as an intracellular adaptor protein linking membrane calcium influx to intracellular signaling pathways. In order to examine the function of this protein, a targeted mutation was introduced into the mouse Enkurin gene. Males that were homozygous for this mutated allele were subfertile. This was associated with lower rates of sperm transport in the female reproductive tract, including reduced entry into the oviduct and slower migration to the site of fertilization in the distal oviduct, and with poor progressive motility in vitro. Flagella from wild-type animals exhibited symmetrical bending and progressive motility in culture medium, and demembranated flagella exhibited the “curlicue” response to Ca2+ in vitro. In contrast, flagella of mice homozygous for the mutated allele displayed only asymmetric bending, nonprogressive motility, and a loss of Ca2+-responsiveness following demembrantion. We propose that Enkurin is part of a flagellar Ca2+-sensor that regulates bending and that the motility defects following mutation of the locus are the proximate cause of subfertility.
  • 机译 多囊卵巢综合征:可能与雄激素诱导的凯莫瑞介导的卵巢单核细胞/巨噬细胞募集有关
    摘要:Polycystic ovary syndrome (PCOS) is a continuum of endocrine and reproductive disorders characterized by hyperandrogenism, antral follicle growth arrest, and chronic inflammation. Macrophages play key role in inflammation, and the balance between M1 (inflammatory) and M2 (anti-inflammatory) macrophages determines physiological/pathological outcomes. Here, we investigated if hyperandrogenism increases ovarian chemerin altering the balance of M1 and M2 macrophages and the granulosa cell death. Ovarian chemerin was upregulated by 5α-dihydrotestosterone (DHT) in lean and overweight rats; while increased serum chemerin levels were only evident in overweight rats, suggesting that the serum chemerin may be reflective of a systemic response and associated with obesity, whereas increased ovarian chemerin expression is a localized response independent of the metabolic status. DHT altered follicle dynamics while increased the M1: M2 macrophages ratio in antral and pre-ovulatory follicles. While ovarian M1 macrophages expressing chemokine-like receptor 1 (CMKLR1) were increased, CMKLR1+ monocytes, which migrated toward chemerin-rich environment, were markedly decreased after 15 days of DHT. Androgen-induced granulosa cell apoptosis was dependent on the presence of macrophages. In humans, chemerin levels in follicular fluid, but not in serum, were higher in lean PCOS patients compared to BMI-matched controls and were associated with increased M1: M2 ratio. Our results support the concept that in PCOS, hyperandrogenemia increases chemerin expression while promotes CMKLR1+ monocytes recruitment and deregulates the immunological niche of ovaries. This study established a new immunological perspective in PCOS at the ovarian level. Hyperandrogenism is associated with upregulation of chemerin and macrophage unbalance in the ovaries.
  • 机译 紫外线辐照消除st鱼胚胎中的原始生殖细胞
    摘要:A technique for rescuing and propagating endangered species involves implanting germ line stem cells into surrogates of a host species whose primordial germ cells (PGCs) have been destroyed. We induced sterilization in sterlet (Acipenser ruthenus) embryos by means of ultraviolet (UV) irradiation at the vegetal pole, the source of early-stage PGCs of sturgeon eggs. The optimal cell stage and length of UV irradiation for the effective repression of the developing PGCs were determined by exposing embryos at the one- to four-cell stage to different doses of irradiation at a wavelength of 254 nm (the optimal absorbance spectrum for germplasm destruction). The vegetal pole region of the embryos was labeled immediately upon irradiation with GFP bucky ball mRNA to monitor the amount of germ plasm and FITC-dextran (M.W. 500,000) to obtain the number of PGCs in the embryos. The size of the germ plasm and number of surrounding mitochondria in the irradiated embryos and controls were observed using transmission electron microscopy, which revealed a drastic reduction in both on the surface of the vegetal pole in the treated embryos. Furthermore, the reduction in the number of PGCs was proportional to the dose of UV irradiation. Under the conditions tested, optimum irradiation for PGCs removal was seen at 360 mJ/cm2 at the one-cell stage. Although some PGCs were observed after the UV irradiation, they significantly reduced in number as the embryos grew. We conclude that UV irradiation is a useful and efficient technique to induce sterility in surrogate sturgeons.
  • 机译 精原干细胞
    摘要:Spermatogonial stem cells (SSCs) are the most primitive spermatogonia in the testis and have an essential role to maintain highly productive spermatogenesis by self-renewal and continuous generation of daughter spermatogonia that differentiate into spermatozoa, transmitting genetic information to the next generation. Since the 1950s, many experimental methods, including histology, immunostaining, whole-mount analyses, and pulse-chase labeling, had been used in attempts to identify SSCs, but without success. In 1994, a spermatogonial transplantation method was reported that established a quantitative functional assay to identify SSCs by evaluating their ability to both self-renew and differentiate to spermatozoa. The system was originally developed using mice and subsequently extended to nonrodents, including domestic animals and humans. Availability of the functional assay for SSCs has made it possible to develop culture systems for their ex vivo expansion, which dramatically advanced germ cell biology and allowed medical and agricultural applications. In coming years, SSCs will be increasingly used to understand their regulation, as well as in germline modification, including gene correction, enhancement of male fertility, and conversion of somatic cells to biologically competent male germline cells.
  • 机译 不育的初始节段特异性Pten基因敲除小鼠的附睾中转运蛋白活性的变化
    摘要:A fully functional initial segment, the most proximal region of the epididymis, is important for male fertility. Our previous study generated a mouse model to investigate the importance of initial segment function in male fertility. In that model, phosphatase and tensin homolog (Pten) was conditionally removed from the initial segment epithelium, which resulted in epithelial de-differentiation. When spermatozoa progressed through the de-differentiated epithelial duct, they developed angled flagella, suggesting compromised sperm maturation, which eventually resulted in male infertility. To understand the molecular mechanisms, by which PTEN regulates epididymal sperm maturation, we compared the transcriptome profile of the initial segment between controls and initial segment-specific Pten knockouts and revealed that water, ion, and organic solute transporter activities were one of the top molecular and cellular functions altered following loss of Pten. Alteration in protein levels and localization of several transporters following loss of Pten were also observed by immunofluorescence analysis. Epithelial cells of the initial segment from knockouts were more permeable to fluorescein isothiocyanate–dextran (4000 Da) compared to controls. Interestingly, conditional deletion of Pten from other organs also resulted in changes in transporter activity, suggesting a common role of PTEN in regulation of transporter activity. Taken together, our data support the hypothesis that loss of Pten from the initial segment epithelium results in changes in the transporting and permeability characteristics of the epithelium, which in turn altered the luminal fluid microenvironment that is so important for sperm maturation and male fertility.
  • 机译 表面活性剂蛋白A抑制小鼠活大肠杆菌诱导的早产
    摘要:Preterm birth accounts for the majority of neonatal morbidity and mortality in the developed world. A significant proportion of cases of spontaneous preterm labor are attributable to infections within gestational tissues. Surfactant protein A (SP-A), a collectin produced in the fetal lung and other tissues, has been shown previously in mice to suppress preterm delivery due to intrauterine (IU) instillation of sterile proinflammatory substances. Here we report a powerful antilabor effect for SP-A after IU infection with live Escherichia coli. SP-A abolished preterm birth (rate reduced from 100% to 0%) when it was administered into the uterus simultaneously with bacterial infection, reducing it by 75% when administered intravenously at the same time as IU bacterial inoculation, and by 48% when administered intravenously 4 h after IU bacterial infection. This effect on preterm delivery was accompanied by a parallel benefit on fetal survival in utero. SP-A had no effect on bacterial growth but reversed several major consequences of infection, including increased production of inflammatory mediators and a shift in macrophage polarization to the M1 phenotype. These findings suggest that exogenous SP-A has potential use to counteract infection-induced labor by reversing its proinflammatory consequences.
  • 机译 小鼠卵母细胞通过与细胞膜融合而与颗粒细胞连接,并在卵泡发育过程中形成大型复合体
    摘要:Proper development and maturation of oocytes requires interaction with granulosa cells. Previous reports have indicated that mammalian oocytes connect with cumulus cells through gap junctions at the tip of transzonal projections that extend from the cells. Although the gap junctions between oocytes and transzonal projections provide a pathway through which small molecules (<1 kDa) can travel, it is unclear how molecules >1 kDa are transported between the oocytes and cumulus cells. In this study, we presented new connections between oocytes and granulosa cells. The green fluorescein protein Aequorea coerulescens green fluorescein protein (AcGFP1) localizing in oocyte cell membrane, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and dextran conjugates (10,000 MW) injected into the oocytes, which were unable to pass through gap junctions, were diffused from the oocytes into the surrounding granulosa cells through these connections. These connect an oocyte to the surrounding cumulus and granulosa cells by fusing with the cell membranes and forming a large complex during follicle development. Furthermore, we show two characteristics of these connections during follicle development—the localization of growth and differentiation factor-9 within the connections and the dynamics of the connections at ovulation. This article presents for the first time that mammalian oocytes directly connect to granulosa cells by fusing with the cell membrane, similar to that in Drosophila.
  • 机译 睾丸间质细胞:形成,功能和调节
    摘要:Herein we summarize important discoveries made over many years about Leydig cell function and regulation. Fetal Leydig cells produce the high levels of androgen (testosterone or androstenedione, depending upon the species) required for differentiation of male genitalia and brain masculinization. Androgen production declines with loss of these cells, reaching a nadir at postpartum. Testosterone then gradually increases to high levels with adult Leydig cell development from stem cells. In the adult, luteinizing hormone (LH) binding to Leydig cell LH receptors stimulates cAMP production, increasing the rate of cholesterol translocation into the mitochondria. Cholesterol is metabolized to pregnenolone by the CYP11A1 enzyme at the inner mitochondrial membrane, and pregnenolone to testosterone by mitochondria and smooth endoplasmic reticulum enzymes. Cholesterol translocation to the inner mitochondrial membrane is mediated by a protein complex formed at mitochondrial contact sites that consists of the cholesterol binding translocator protein, voltage dependent anion channel, and other mitochondrial and cytosolic proteins. Steroidogenic acute regulatory protein acts at this complex to enhance cholesterol movement across the membranes and thus increase testosterone formation. The 14-3-3γ and ε adaptor proteins serve as negative regulators of steroidogenesis, controlling the maximal amount of steroid formed. Decline in testosterone production occurs in many aging and young men, resulting in metabolic and quality-of-life changes. Testosterone replacement therapy is widely used to elevate serum testosterone levels in hypogonadal men. With knowledge gained of the mechanisms involved in testosterone formation, it is also conceivable to use pharmacological means to increase serum testosterone by Leydig cell stimulation.
  • 机译 秀丽隐杆线虫精子膜蛋白相互作用组
    摘要:The interaction and organization of proteins in the sperm membrane are important for all aspects of sperm function. We have determined the interactions between 12 known mutationally defined and cloned sperm membrane proteins in a model system for reproduction, the nematode Caenorhabditis elegans. Identification of the interactions between sperm membrane proteins will improve our understanding of and ability to characterize defects in sperm function. To identify interacting proteins, we conducted a split-ubiquitin membrane yeast two-hybrid analysis of gene products identified through genetic screens that are necessary for sperm function and predicted to encode transmembrane proteins. Our analysis revealed novel interactions between sperm membrane proteins known to have roles in spermatogenesis, spermiogenesis, and fertilization. For example, we found that a protein known to play a role in sperm function during fertilization, SPE-38 (a predicted four pass transmembrane protein), interacts with proteins necessary for spermiogenesis and spermatogenesis and could serve as a central organizing protein in the plasma membrane. These novel interaction pairings will provide the foundation for investigating previously unrealized membrane protein interactions during spermatogenesis, spermiogenesis, and sperm function during fertilization.
  • 机译 父代心理应激引起的后代遗传重编程的单细胞表观遗传模型
    摘要:Experimental evidence shows that parental psychological stress affects the long-term health of offspring in an inheritable fashion. Although epigenetic mechanisms, including DNA methylation, miRNA, and histone modifications, are involved in transgenerational programming, the underlining mechanisms of transgenerational inheritance remain unsolved. Here, we present a single-cell-based computational model for transgenerational inheritance for investigating the long-term dynamics of phenotype changes in response to parental stress. The model is based on a recent study that has identified the imprinted sperm gene Sfmbt2 as a key target, and incorporates crosstalks among drastically different time scales in mammalian development, including DNA methylation, transcription, cell division, and population dynamics. Computational analysis of the model suggests a positive feedback to DNA methylation in the promoter region of sperm Sfmbt2 gene that provides a possible mechanism to mediate the parental psychological stress reprogramming in offspring. This approach provides a modeling framework for the understanding of the roles that epigenetics play in transgenerational inheritance.
  • 机译 血细胞胎盘植入:发展,功能和适应
    摘要:Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.
  • 机译 小鼠卵母细胞向胚胎的过渡:过去,现在和将来
    摘要:The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
  • 机译 从静止到分娩的过渡过程中,人类子宫肌层转录组的整合microRNA和mRNA网络分析,
    摘要:We conducted integrated transcriptomics network analyses of miRNA and mRNA interactions in human myometrium to identify novel molecular candidates potentially involved in human parturition. Myometrial biopsies were collected from women undergoing primary Cesarean deliveries in well-characterized clinical scenarios: (1) spontaneous term labor (TL, n = 5); (2) term nonlabor (TNL, n = 5); (3) spontaneous preterm birth (PTB) with histologic chorioamnionitis (PTB-HCA, n = 5); and (4) indicated PTB nonlabor (PTB-NL, n = 5). RNAs were profiled using RNA sequencing, and miRNA-target interaction networks were mined for key discriminatory subnetworks. Forty miRNAs differed between TL and TNL myometrium, while seven miRNAs differed between PTB-HCA vs. PTB-NL specimens; six of these were cross-validated using quantitative PCR. Based on the combined sequencing data, unsupervised clustering revealed two nonoverlapping cohorts that differed primarily by absence or presence of uterine quiescence, rather than gestational age or original clinical cohort. The intersection of differentially expressed miRNAs and their targets predicted 22 subnetworks with enriched representation of miR-146b-5p, miR-223-3p, and miR-150-5p among miRNAs, and of myocyte enhancer factor-2C (MEF2C) among mRNAs. Of four known MEF2 transcription factors, decreased MEF2A and MEF2C expression in women with uterine nonquiescence was observed in the sequencing data, and validated in a second cohort by quantitative PCR. Immunohistochemistry localized MEF2A and MEF2C to myometrial smooth muscle cells and confirmed decreased abundance with labor. Collectively, these results suggest altered MEF2 expression may represent a previously unrecognized process through which miRNAs contribute to the phenotypic switch from quiescence to labor in human myometrium.
  • 机译 男性中的雌激素:历史观点
    摘要:Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号