您现在的位置:首页>美国卫生研究院文献>Beilstein Journal of Nanotechnology

期刊信息

  • 期刊名称:

    -

  • 刊频:
  • NLM标题: Beilstein J Nanotechnol
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<11/20>
1864条结果
  • 机译 快速热退火用于射频磁控溅射沉积的高质量ITO薄膜
    摘要:In this work, rapid thermal annealing (RTA) was applied to indium tin oxide (ITO) films in ambient atmosphere, resulting in significant improvements of the quality of the ITO films that are commonly used as conductive transparent electrodes for photovoltaic structures. Starting from a single sintered target (purity 99.95%), ITO thin films of predefined thickness (230 nm, 300 nm and 370 nm) were deposited at room temperature by radio-frequency magnetron sputtering (rfMS). After deposition, the films were subjected to a RTA process at 575 °C (heating rate 20 °C/s), maintained at this temperature for 10 minutes, then cooled down to room temperature at a rate of 20 °C/s. The film structure was modified by changing the deposition thickness or the RTA process. X-ray diffraction investigations revealed a cubic nanocrystalline structure for the as-deposited ITO films. After RTA, polycrystalline compounds with a textured (222) plane were observed. X-ray photon spectroscopy was used to confirm the beneficial effect of the RTA treatment on the ITO chemical composition. Using a Tauc plot, values of the optical band gap ranging from 3.17 to 3.67 eV were estimated. These values depend on the heat treatment and the thickness of the sample. Highly conductive indium tin oxide thin films (ρ = 7.4 × 10−5 Ω cm) were obtained after RTA treatment in an open atmosphere. Such films could be used to manufacture transparent contact electrodes for solar cells.
  • 机译 基于ZnO / SiC纳米复合材料的高温电阻式气体传感器
    摘要:Increasing requirements for environmental protection have led to the need for the development of control systems for exhaust gases monitored directly at high temperatures in the range of 300–800 °C. The development of high-temperature gas sensors requires the creation of new materials that are stable under these conditions. The stability of nanostructured semiconductor oxides at high temperature can be enhanced by creating composites with highly dispersed silicon carbide (SiC). In this work, ZnO and SiC nanofibers were synthesized by electrospinning of polymer solutions followed by heat treatment, which is necessary for polymer removal and crystallization of semiconductor materials. ZnO/SiC nanocomposites (15–45 mol % SiC) were obtained by mixing the components in a single homogeneous paste with subsequent thermal annealing. The composition and microstructure of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The electrophysical and gas sensing properties of the materials were investigated by in situ conductivity measurements in the presence of the reducing gases CO and NH3 (20 ppm), in dry conditions (relative humidity at 25 °C RH25 = 0) and in humid air (RH25 = 30%) in the temperature range 400–550 °C. The ZnO/SiC nanocomposites were characterized by a higher concentration of chemisorbed oxygen, higher activation energy of conductivity, and higher sensor response towards CO and NH3 as compared with ZnO nanofibers. The obtained experimental results were interpreted in terms of the formation of an n–n heterojunction at the ZnO/SiC interface.
  • 机译 单极磁场脉冲是超导约瑟夫森“原子”中超快操作的有利工具
    摘要:A theoretical approach to the consistent full quantum description of the ultrafast population transfer and magnetization reversal in superconducting meta-atoms induced by picosecond unipolar pulses of a magnetic field is developed. A promising scheme based on the regime of stimulated Raman Λ-type transitions between qubit states via upper-lying levels is suggested in order to provide ultrafast quantum operations on the picosecond time scale. The experimental realization of a circuit-on-chip for the discussed ultrafast control is presented.
  • 机译 Graphynes:防震的另一种轻便解决方案
    摘要:The excellent mechanical properties of graphyne (GY) have made it an appealing candidate in the field of impact protection. We assessed the deformation mechanisms of monolayer GY nanosheets of different morphologies, including α-GY, β-GY, γ-GY and 6612-GY, under supersonic-velocity impacts (from 1 to 6 km/s) based on in silico studies. Generally, cracks initiate at the geometry center and the nanosheet experiences significant out-of-plane deformation before the propagation of cracks. Tracking the atomic von Mises stress distribution, it is found that its cumulative density function has a strong correlation with the magnitude of the Young’s modulus of the GYs. For nanosheets with a higher Young’s modulus, it tends to transfer momentum at a faster rate. Thus, a better energy dissipation or delocalization is expected during impact. This study provides a fundamental understanding of the deformation and penetration mechanisms of monolayer GY nanosheets under impact, which is crucial in order to facilitate their emerging applications for impact protection.
  • 机译 开尔文探针力显微镜功函数在过渡还原和氧化作用下表征过渡金属氧化物晶体
    摘要:Controlling the work function of transition metal oxides is of key importance with regard to future energy production and storage. As the majority of applications involve the use of heterostructures, the most suitable characterization technique is Kelvin probe force microscopy (KPFM), which provides excellent energetic and lateral resolution. In this paper, we demonstrate precise characterization of the work function using the example of artificially formed crystalline titanium monoxide (TiO) nanowires on strontium titanate (SrTiO3) surfaces, providing a sharp atomic interface. The measured value of 3.31(21) eV is the first experimental work function evidence for a cubic TiO phase, where significant variations among the different crystallographic facets were also observed. Despite the remarkable height of the TiO nanowires, KPFM was implemented to achieve a high lateral resolution of 15 nm, which is close to the topographical limit. In this study, we also show the unique possibility of obtaining work function and conductivity maps on the same area by combining noncontact and contact modes of atomic force microscopy (AFM). As most of the real applications require ambient operating conditions, we have additionally checked the impact of air venting on the work function of the TiO/SrTiO3(100) heterostructure, proving that surface reoxidation occurs and results in a work function increase of 0.9 eV and 0.6 eV for SrTiO3 and TiO, respectively. Additionally, the influence of adsorbed surface species was estimated to contribute 0.4 eV and 0.2 eV to the work function of both structures. The presented method employing KPFM and local conductivity AFM for the characterization of the work function of transition metal oxides may help in understanding the impact of reduction and oxidation on electronic properties, which is of high importance in the development of effective sensing and catalytic devices.
  • 机译 由硝基肉桂酰胺两亲物自组装的手性纳米结构:取代基和溶剂效应
    摘要:Chiral nanostructures, such as α-helical proteins and double helix DNA, are widely found in biological systems and play a significant role in the biofunction of life. These structures are essentially fabricated through the covalent or noncovalent bonds between small chiral molecules. It is thus an important issue to understand how small chiral molecules can form chiral nanostructures. Here, using a series of isomeric nitrocinnamic amide derivatives, we have investigated the self-assembly behavior and the effect of the substituent position as well as the solvent on the formation of chiral nanostructures. It was found that totally different chiral nanostructures were formed due to the different positions of the nitro group on the cinnamic amide. Moreover, it was found that the chiral sense of the self-assembled nanostructures can be regulated by the solvent whereby helicity inversion was observed. This work provides a simple way to regulate the self-assembly pathway via molecular design and choice of solvent for the controlled creation of chiral nanostructures.
  • 机译 机械化学法处理聚氨酯废料的循环再生:用于超级电容器的N掺杂多孔碳材料的合成
    摘要:We developed an upcycling process of polyurethane obtaining porous nitrogen-doped carbon materials that were applied in supercapacitor electrodes. In detail, a mechanochemical solvent-free one-pot synthesis is used and combined with a thermal treatment. Polyurethane is an ideal precursor already containing nitrogen in its backbone, yielding nitrogen-doped porous carbon materials with N content values of 1–8 wt %, high specific surface area values of up to 2150 m2·g−1 (at a N content of 1.6 wt %) and large pore volume values of up to 0.9 cm3·g−1. The materials were tested as electrodes for supercapacitors in aqueous 1 M Li2SO4 electrolyte (100 F·g−1), organic 1 M TEA-BF4 (ACN, 83 F·g−1) and EMIM-BF4 (70 F·g−1).
  • 机译 表面电荷和边界滑移对纳米管中时间周期压力驱动的流动和动能转换的影响
    摘要:Time-periodic pressure-driven slip flow and electrokinetic energy conversion efficiency in a nanotube are studied analytically. The slip length depends on the surface charge density. Electric potential, velocity and streaming electric field are obtained analytically under the Debye–Hückel approximation. The electrokinetic energy conversion efficiency is computed using these results. The effects of surface charge-dependent slip and electroviscous effect on velocity and electrokinetic energy conversion efficiency are discussed. The main results show that the velocity amplitude and the electrokinetic energy conversion efficiency of the surface charge-dependent slip flow are reduced compared with those of the surface charge-independent slip flow.
  • 机译 通过接触共振原子力显微镜对柔性电路进行表面成像
    摘要:Subsurface imaging of Au circuit structures embedded in poly(methyl methacrylate) (PMMA) thin films with a cover thickness ranging from 52 to 653 nm was carried out by using contact resonance atomic force microscopy (CR-AFM). The mechanical difference of the embedded metal layer leads to an obvious CR-AFM frequency shift and therefore its unambiguous differentiation from the polymer matrix. The contact stiffness contrast, determined from the tracked frequency images, was employed for quantitative evaluation. The influence of various parameter settings and sample properties was systematically investigated by combining experimental results with theoretical analysis from finite element simulations. The results show that imaging with a softer cantilever and a lower eigenmode will improve the subsurface contrast. The experimental results and theoretical calculations provide a guide to optimizing parameter settings for the nondestructive diagnosis of flexible circuits. Defect detection of the embedded circuit pattern was also carried out, which indicates the capability of imaging tiny subsurface structures smaller than 100 nm by using CR-AFM.
  • 机译 低于50 keV He +的固定束全场透射氦离子显微镜:投影图像和强度模式
    摘要:A dedicated transmission helium ion microscope (THIM) for sub-50 keV helium has been constructed to investigate ion scattering processes and contrast mechanisms, aiding the development of new imaging and analysis modalities. Unlike a commercial helium ion microscope (HIM), the in-house built instrument allows full flexibility in experimental configuration. Here, we report projection imaging and intensity patterns obtained from powder and bulk crystalline samples using stationary broad-beam as well as convergent-beam illumination conditions in THIM. The He+ ions formed unexpected spot patterns in the far field for MgO, BN and NaCl powder samples, but not for Au-coated MgO. The origin of the spot patterns in these samples was investigated. Surface diffraction of ions was excluded as a possible cause because the recorded scattering angles do not correspond to the predicted Bragg angles. Complementary secondary electron (SE) imaging in the HIM revealed that these samples charge significantly under He+ ion irradiation. The spot patterns obtained in the THIM experiments are explained as artefacts related to sample charging. The results presented here indicate that factors other than channeling, blocking and surface diffraction of ions have an impact on the final intensity distribution in the far field. Hence, the different processes contributing to the final intensities will need to be understood in order to decouple and study the relevant ion-beam scattering and deflection phenomena.
  • 机译 基于逆霍斯勒合金Ti2NiAl的电流垂直于平面的自旋阀中的巨磁阻比
    摘要:A Ti2NiAl inverse Heusler alloy based current-perpendicular-to-plane (CPP) spin valve (SV) with various kinds of atomic terminated interfaces has been designed to explore the potential application of Heusler alloys in spintronics devices. By performing first principles calculations combined with the nonequilibrium Green’s function, it is revealed that spin magnetic moments of interfacial atoms suffer a decrease, and the electronic structure shows that the TiNiB-terminated structure possesses the largest interface spin polarization of ≈55%. Our study on spin-transport properties indicates that the total transmission coefficient at the Fermi level mainly comes from the contribution from the spin up electrons, which are regarded as the majority of the spin electrons. When the two electrodes of the CPP-SV device are in parallel magnetization configuration, the interface containing Ti and Ni atoms possesses a higher spin up transmission coefficient than the interface containing Ti and Al atoms. The device with the TiNiB-terminated interface possesses the largest magnetoresistance ratio of 3.28 × 105, and it has great application potential in spintronics devices.
  • 机译 用于皮肤的纳米多孔smartPearl –确定最佳的二氧化硅类型和可扩展的生产工艺是上市产品的前提
    摘要:smartPearls are a dermal delivery system for poorly soluble active agents, consisting of nanoporous silica particles loaded with a long-term stable, amorphous active agent in its mesopores (2–50 nm). The amorphous state of the active agent is known to increase dermal bioavailability. For use in marketed products, optimal silica types were identified from commercially available, regulatory accepted silica. In addition, a scalable production process was demonstrated. The loading of the particles was performed by applying the immersion–evaporation method. The antioxidant rutin was used as a model active agent and ethanol was applied as the solvent. Various silica particles (Syloid®, Davisil®) differing in particle size (7–50 µm), pore diameter (3–25 nm) and pore volume (0.4–1.75 mL/g) were investigated regarding their ease of processing. The evaporation from the silica–ethanol suspensions was performed in a rotary evaporator. The finest powders were obtained with larger-sized silica. The maximum loading staying amorphous was achieved between 10% and 25% (w/w), depending on the silica type. A loading mechanism was also proposed. The most suitable processing occurred with the large-sized Syloid® XDP 3050 silica with a 50 µm particle size and a pore diameter of 25 nm, resulting in 18% (w/w) maximum loading. Based on a 10% (w/w) loading and the amorphous solubility of the active agent, for a 100 kg dermal formulation, about 500 g of loaded particles were required. This corresponds to production of 5 kg of loaded smartPearls for a formulation batch size of a ton. The production of 5 kg (i.e., about 25 L of solvent removal) can be industrially realized in a commercial 50 L rotary evaporator.
  • 机译 层状双氢氧化物/海泡石混合纳米结构用于除草剂的控释
    摘要:In this work, organic–inorganic hybrid nanoarchitectures were prepared in a single coprecipitation step by assembling magnesium–aluminum layered double hydroxides (MgAl-LDH) and a sepiolite fibrous clay, with the simultaneous encapsulation of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) as the MgAl-LDH retains its ion exchange properties. The synthetic procedure was advantageous in comparison to the incorporation of MCPA by ion exchange after the formation of the LDH/sepiolite nanoarchitecture in a previous step, as it was less time consuming and gave rise to a higher loading of MCPA. The resulting MCPA-LDH/sepiolite nanoarchitectures were characterized by various physicochemical techniques (XRD, FTIR and 29Si NMR spectroscopies, CHN analysis and SEM) that revealed interactions of LDH with the sepiolite fibers through the silanol groups present on the outer surface of sepiolite, together with the intercalation of MCPA in the LDH confirmed by the increase in the basal spacing from 0.77 nm for the pristine LDH to 2.32 nm for the prepared materials. The amount of herbicide incorporated in the hybrid nanoarchitectures prepared by the single-step coprecipitation method surpassed the CEC of LDH (ca. 330 mEq/100 g), with values reaching 445 mEq/100 g LDH for certain compositions. This suggests a synergy between the inorganic solids that allows the nanoarchitecture to exhibit better adsorption properties than the separate components. Additionally, in the release assays, the herbicide incorporated in the hybrid nanoarchitectures could be completely released, which confirms its suitability for agricultural applications. In order to achieve a more controlled release of the herbicide and to act for several days on the surface of the soil, the hybrid nanoarchitectures were encapsulated in a biopolymer matrix of alginate/zein and shaped into spheres. In in vitro tests carried out in bidistilled water, a continuous release of MCPA from the bionanocomposite beads was achieved for more than a week, while the non-encapsulated materials released the 100% of MCPA in 48 h. Besides, the encapsulation may allow for better handling and transport of the herbicide.
  • 机译 通过聚焦离子束纳米图案化对聚合物层上的液晶预倾斜进行精确的局部控制
    摘要:Background: The alignment of liquid crystals by surfaces is crucial for applications. It determines the director configuration in the bulk, its stability against defects and electro-optical switching scenarios. The conventional planar alignment of rubbed polymer layers can be locally flipped to vertical by irradiation with a focused ion beam on a scale of tens of nanometers. Results: We propose a digital method to precisely steer the liquid crystal director tilt at polymer surfaces by combining micrometer-size areas treated with focused ion beam and pristine areas. The liquid crystal tends to average the competing vertical and planar alignment actions and is stabilized with an intermediate pretilt angle determined by the local pattern duty factor. In particular, we create micrometer-sized periodic stripe patterns with this factor gradually varying from 0 to 1. Our optical studies confirm a predictable alignment of a nematic liquid crystal with the pretilt angle continuously changing from 0° to 90°. A one-constant model neglecting the difference between the elastic moduli reproduces the results quantitatively correctly. Conclusion: The possibility of nanofabrication of polymer substrates supporting an arbitrary (from planar to vertical) spatially inhomogeneous liquid crystal alignment opens up prospects of “imprinting” electrically tunable versatile metasurfaces constituting lenses, prisms and q-plates.
  • 机译 通过修改碳毡电极的结构缺陷来调整钒氧化还原液流电池的性能
    摘要:Polyacrylonitrile (PAN)-based carbon felt was subjected to N2-plasma treatment to increase the heteroatom defects and reactive edge sites as a method to increase the performance in vanadium redox flow batteries (VRFBs). N-doping in the felt was mainly in the form of pyrrolic and pyridinic nitrogen. Even though the amount of oxygen functional groups on the N2-plasma-treated sample was very low, the felt showed enhanced electrochemical performance for both V3+/V2+ as well as V5+/V4+ redox reactions. The result is highly significant as the pristine electrode with the same amount of oxygen functional groups showed significantly less activity for the V3+/V2+ redox reaction. Overall, the single-flow cell experiments with N2-plasma-treated felt showed superior performance compared to the pristine sample. Therefore, the enhanced performance observed for the N2-plasma-treated sample should be attributed to the increase in defects and edge sites. Thus, from the present study, it can be concluded that an alternate way to increase the performance of the VRFBs is to introduce specific defects such as N-doping/substitution or to increase the edge sites. In other words, defects induced in the carbon felt such as heteroatom doping are as beneficial as the presence of oxygen functional groups for the improved performance of VRFBs. Therefore, for an optimum performance of VRFBs, defects such as N-substitution as well as oxygen functionality should be tuned.
  • 机译 载有阿霉素的人血清白蛋白纳米颗粒克服了药物适应性癌细胞中转运蛋白介导的耐药性
    摘要:Resistance to systemic drug therapy is a major reason for the failure of anticancer therapies. Here, we tested doxorubicin-loaded human serum albumin (HSA) nanoparticles in the neuroblastoma cell line UKF-NB-3 and its ABCB1-expressing sublines adapted to vincristine (UKF-NB-3rVCR1) and doxorubicin (UKF-NB-3rDOX20). Doxorubicin-loaded nanoparticles displayed increased anticancer activity in UKF-NB-3rVCR1 and UKF-NB-3rDOX20 cells relative to doxorubicin solution, but not in UKF-NB-3 cells. UKF-NB-3rVCR1 cells were re-sensitised by nanoparticle-encapsulated doxorubicin to the level of UKF-NB-3 cells. UKF-NB-3rDOX20 cells displayed a more pronounced resistance phenotype than UKF-NB-3rVCR1 cells and were not re-sensitised by doxorubicin-loaded nanoparticles to the level of parental cells. ABCB1 inhibition using zosuquidar resulted in similar effects like nanoparticle incorporation, indicating that doxorubicin-loaded nanoparticles successfully circumvent ABCB1-mediated drug efflux. The limited re-sensitisation of UKF-NB-3rDOX20 cells to doxorubicin by circumvention of ABCB1-mediated efflux is probably due to the presence of multiple doxorubicin resistance mechanisms. So far, ABCB1 inhibitors have failed in clinical trials probably because systemic ABCB1 inhibition results in a modified body distribution of its many substrates including drugs, xenobiotics, and other molecules. HSA nanoparticles may provide an alternative, more specific way to overcome transporter-mediated resistance.
  • 机译 新型空心二氧化钛纳米球对耐药菌具有抗菌活性
    摘要:The search for and synthesis of new antimicrobial nanostructures is important to reduce microbial incidence that induces infectious diseases and to aid in the antibiotic resistance crisis, which are two of the most pressing issues in global public health. In this work, novel, hollow, calcined titanium dioxide nanospheres (CSTiO2) were successfully synthesized for the first time through the combination of electrospinning and atomic layer deposition techniques. Poly(vinylpyrrolidone) (PVP) electrosprayed spherical particles were double-coated with alumina and titanium dioxide, and after a calcination process, hollow nanospheres were obtained with a radius of approximately 345 nm and shell thickness of 17 nm. The structural characterization was performed using electron microscopy, and X-ray diffraction and small-angle X-ray diffraction evidenced an anatase titanium dioxide crystalline structure. Thermogravimetric analysis and Fourier-transform infrared spectroscopy studies demonstrated the absence of polymer residue after the calcination process. The antimicrobial properties of the developed CSTiO2 hollow nanospheres were evaluated against different bacteria, including resistant E. coli and S. aureus strains, and when compared to commercial TiO2 nanoparticles, CSTiO2 nanospheres exhibited superior performance. In addition, the positive effect of UV irradiation on the antimicrobial activity was demonstrated.
  • 机译 涂有TiO2 / GO的功能隔板可抑制锂硫电池中的多硫化物迁移
    摘要:Lithium–sulfur batteries render a high energy density but suffer from poor cyclic performance due to the dissolution of intermediate polysulfides. Herein, a lightweight nanoporous TiO2 and graphene oxide (GO) composite is prepared and utilized as an interlayer between a Li anode and a sulfur cathode to suppress the polysulfide migration and improve the electrochemical performance of Li/S batteries. The interlayer can capture the polysulfides due to the presence of oxygen functional groups and formation of chemical bonds. The hierarchically porous TiO2 nanoparticles are tightly wrapped in GO sheets and facilitate the polysulfide storage and chemical absorption. The excellent adhesion between TiO2 nanoparticles and GO sheets resulted in enhanced conductivity, which is highly desirable for an efficient electron transfer process. The Li/S battery with a TiO2/GO-coated separator exhibited a high initial discharge capacity of 1102.8 mAh g−1 and a 100th cycle capacity of 843.4 mAh g−1, which corresponds to a capacity retention of 76.48% at a current rate of 0.2 C. Moreover, the Li/S battery with the TiO2/GO-coated separator showed superior cyclic performance and excellent rate capability, which shows the promise of the TiO2/GO composite in next-generation Li/S batteries.
  • 机译 晶体尺寸和温度对Zr基金属-有机骨架DUT-98吸附诱导的柔性的影响
    摘要:In this contribution we analyze the influence of adsorption cycling, crystal size, and temperature on the switching behavior of the flexible Zr-based metal–organic framework DUT-98. We observe a shift in the gate-opening pressure upon cycling of adsorption experiments for micrometer-sized crystals and assign this to a fragmentation of the crystals. In a series of samples, the average crystal size of DUT-98 crystals was varied from 120 µm to 50 nm and the obtained solids were characterized by X-ray diffraction, infrared spectroscopy, as well as scanning and transmission electron microscopy. We analyzed the adsorption behavior by nitrogen and water adsorption at 77 K and 298 K, respectively, and show that adsorption-induced flexibility is only observed for micrometer-sized crystals. Nanometer-sized crystals were found to exhibit reversible type I adsorption behavior upon adsorption of nitrogen and exhibit a crystal-size-dependent steep water uptake of up to 20 mmol g−1 at 0.5 p/p 0 with potential for water harvesting and heat pump applications. We furthermore investigate the temperature-induced structural transition by in situ powder X-ray diffraction. At temperatures beyond 110 °C, the open-pore state of the nanometer-sized DUT-98 crystals is found to irreversibly transform to a closed-pore state. The connection of crystal fragmentation upon adsorption cycling and the crystal size dependence of the adsorption-induced flexibility is an important finding for evaluation of these materials in future adsorption-based applications. This work thus extends the limited amount of studies on crystal size effects in flexible MOFs and hopefully motivates further investigations in this field.
  • 机译 1T’-WTe2 2D分层材料的显着电子和光学各向异性
    摘要:Anisotropic 2D materials exhibit novel optical, electrical and thermoelectric properties that open possibilities for a great variety of angle-dependent devices. Recently, quantitative research on 1T’-WTe2 has been reported, revealing its fascinating physical properties such as non-saturating magnetoresistance, highly anisotropic crystalline structure and anisotropic optical/electrical response. Especially for its anisotropic properties, surging research interest devoted solely to understanding its structural and optical properties has been undertaken. Here we report quantitative, comprehensive work on the highly anisotropic, optical, electrical and optoelectronic properties of few-layer 1T’-WTe2 by azimuth-dependent reflectance difference microscopy, DC conductance measurements, as well as polarization-resolved and wavelength-dependent optoelectrical measurements. The electrical conductance anisotropic ratio is found to ≈103 for a thin 1T’-WTe2 film, while the optoelectronic anisotropic ratio is around 300 for this material. The polarization dependence of the photo-response is ascribed to the unique anisotropic in-plane crystal structure, consistent with the optical absorption anisotropy results. In general, 1T’-WTe2, with its highly anisotropic electrical and photoresponsivity reported here, demonstrates a route to exploit the intrinsic anisotropy of 2D materials and the possibility to open up new ways for applications of 2D materials for light polarization detection.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号