您现在的位置:首页>美国卫生研究院文献>Applied Bionics and Biomechanics

期刊信息

  • 期刊名称:

    -

  • 刊频: Four no. a year, 2005-
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<5/15>
281条结果
  • 机译 肢体外骨骼康复系统中sEMG信号处理的实时评估
    摘要:As an important branch of medical robotics, a rehabilitation training robot for the hemiplegic upper limbs is a research hotspot of rehabilitation training. Based on the motion relearning program, rehabilitation technology, human anatomy, mechanics, computer science, robotics, and other fields of technology are covered. Based on an sEMG real-time training system for rehabilitation, the exoskeleton robot still has some problems that need to be solved in this field. Most of the existing rehabilitation exoskeleton robotic systems are heavy, and it is difficult to ensure the accuracy and real-time performance of sEMG signals. In this paper, we design a real-time training system for the upper limb exoskeleton robot based on the EMG signal. It has four main characteristics: light weight, portability, high precision, and low delay. This work includes the structure of the rehabilitation robotic system and the method of signal processing of the sEMG. An experiment on the accuracy and time delay of the sEMG signal processing has been done. In the experimental results, the recognition accuracy of the sEMG is 94%, and the average delay time is 300 ms, which meets the accuracy and real-time requirements.
  • 机译 不同速度纵向影响下膝关节的生物力学响应和损伤特征
    摘要:Background and Objective Knee joint collision injuries occur frequently in military and civilian scenarios, but there are few studies assessing longitudinal impacts on knee joints. In this study, the mechanical responses and damage characteristics of knee longitudinal collisions were investigated by finite element analysis and human knee impact tests.
  • 机译 插入类型和深度对椎弓根螺钉拉出强度的影响:有限元研究
    摘要:Purpose The pedicle screw is a surgical device that has become widely used in spinal fixation and stabilization. Postsurgical complications such as screw loosening due to fatigue loading and screw breakage still need investigations. Clinical parameters such as the screw insertion type and depth, the bone density, and the patient degree of mobility greatly affect the mechanisms of the implant's failure/success.
  • 机译 人体鼓膜的力学性能及其对人体听觉系统动态行为的影响
    摘要:The difficulty to estimate the mechanical properties of the tympanic membrane (TM) is a limitation to understand the sound transmission mechanism. In this paper, based on finite element calculations, the sensitivity of the human hearing system to these properties is evaluated. The parameters that define the bending stiffness properties of the membrane have been studied, specifically two key parameters: Young's modulus of the tympanic membrane and the thickness of the eardrum. Additionally, it has been completed with the evaluation of the presence of an initial prestrain inside the TM. Modal analysis is used to study the qualitative characteristics of the TM comparing with vibration patterns obtained by holography. Higher-order modes are shown as a tool to identify these properties. The results show that different combinations of elastic properties and prestrain provide similar responses. The presence of prestrain at the membrane adds more uncertainty, and it is pointed out as a source for the lack of agreement of some previous TM elastic modulus estimations.
  • 机译 Bowden电缆驱动的上肢软外骨骼的设计
    摘要:To assist hemiplegic patients with the activities of daily life, many upper limb soft exoskeletons have been developed. In this paper, we propose the structure of upper limb soft exoskeleton for rehabilitation training based on human biomechanics. The soft driving structure based on Bowden cable is devised. Man-machine interaction force must be considered because it can damage on the joint and lead to arm discomfort. We focus on structural optimization to minimize man-machine interaction force. Human arm model is established to perform motion simulation in ADAMS. To summarize optimality conditions, the movements of elbow are simulated in ADAMS when the number and location of force bearing points are changed. This paper describes the movement of the shoulder skeletal system through a mathematical model based on the Bowden cable transmission and utilizes man-machine contact force sensor to detect human interaction forces for analysis of experimental data. The experimental results show that man-machine interaction force can be reduced when the number of bearing force points is increased and bearing force point is away from the elbow.
  • 机译 中国蜜蜂Apis cerana cerana Fabricius膜翅的仿生模型和纳米力学行为研究
    摘要:The structures combining the veins and membranes of membranous wings of the Chinese bee Apis cerana cerana Fabricius into a whole have excellent load-resisting capacity. The membranous wings of Chinese bees were taken as research objects and the mechanical properties of a biomimetic model of membranous wings as targets. In order to understand and learn from the biosystem and then make technical innovation, the membranous wings of Chinese bees were simulated and analysed with reverse engineering and finite element method. The deformations and stress states of the finite element model of membranous wings were researched under the concentrated force, uniform load, and torque. It was found that the whole model deforms evenly and there are no unusual deformations arising. The displacements and deformations are small and transform uniformly. It was indicated that the veins and membranes combine well into a whole to transmit loads effectively, which illustrates the membranous wings of Chinese bees having excellent integral mechanical behaviour and structure stiffness. The realization of structure models of the membranous wings of Chinese bees and analysis of the relativity of structures and performances or functions will provide an inspiration for designing biomimetic thin-film materials with superior load-bearing capacity.
  • 机译 过渡与连续斜坡行走:适应年轻人中质速变化的中心
    摘要:During continuous uphill walking (UW) or downhill walking, human locomotion is modified to counteract the gravitational force, aiding or impeding the body's forward momentum, respectively. This study aimed at investigating the center of mass (COM) and center of pressure (COP) velocities and their relative distance during the transition from uphill to downhill walking (UDW) to determine whether locomotor adjustments differ between UDW and UW. Fourteen participants walked on a triangular slope and a continuous upslope of 15°. The kinematics and COPs were obtained using a force plate and a motion capture system. The vertical velocity of the COM in the propulsion phase, the horizontal distance between the COM and COP at initial contact, and the duration of the subphases significantly differed between UDW and UW (all p < 0.05). Compared with the results of UW, longer durations and the deeper downward moving COM in the propulsion phase were observed during UDW (all p < 0.05). Additionally, a shorter horizontal distance between the COM and COP at initial contact was associated with a slower vertical COM velocity in the propulsion phase during UDW. The reduced velocity is likely a gait alteration to decrease the forward momentum of the body during UDW.
  • 机译 为行动不便的人开发新型智能操纵杆
    摘要:Despite the diversity of electric wheelchairs, many people with physical limitations and seniors have difficulty using their standard joystick. As a result, they cannot meet their needs or ensure safe travel. Recent assistive technologies can help to give them autonomy and independence. This work deals with the real-time implementation of an artificial intelligence device to overcome these problems. Following a review of the literature from previous work, we present the methodology and process for implementing our intelligent control system on an electric wheelchair. The system is based on a neural algorithm that overcomes problems with standard joystick maneuvers such as the inability to move correctly in one direction. However, this implies the need for an appropriate methodology to map the position of the joystick handle. Experiments on a real wheelchair are carried out with real patients of the Mohamed Kassab National Institute Orthopedic, Physical and Functional Rehabilitation Hospital of Tunis. The proposed intelligent system gives good results compared to the use of a standard joystick.
  • 机译 正畸弓丝的三维数字表达与机器人弯曲方法研究
    摘要:Malocclusion is the third largest oral disease in the world. At present, the most effective treatment method for malocclusion is the fixed orthodontic technique based on orthodontic archwires. Robotic archwire bending can overcome the shortcomings of manual bending such as low efficiency and low precision. The three-dimensional digital expression and robot bending method of orthodontic archwire are studied to realize the orthodontic archwire bending using a robot. Tooth is identified by the doctors' common method. The shape, position, and constraint relationship of orthodontic archwire in three-dimensional space are expressed by the Bessel curve. The bending of the archwire curve is realized by transmitting the archwire curve into the alternative lines. The planning method of forming points and the spatial angle planning method are proposed. The archwire bending experiment is carried out with the maxillary information of a patient. The error rate of the experimental and ideal values is between 2.94% and 6.74%. It can meet the physician's basic requirements after simple modification. Therefore, it can be considered that the method of using discrete Bessel curve to carry out the control point planning and angle planning is suitable for the orthodontic archwire-bending robot system, which has certain feasibility and practicability in clinical treatment.
  • 机译 猪因头颅撞击而致胸腹损伤的实验研究
    摘要:To know the caudocephalad impact- (CCI-) induced injuries more clearly, 21 adult minipigs, randomly divided into three groups: control group (n = 3), group I (n = 9), and group II (n = 9), were used to perform the CCI experiments on a modified deceleration sled. Configured impact velocity was 0 m/s in the control group, 8 m/s in group I, and 11 m/s in group II. The kinematics and mechanical responses of the subjects were recorded and investigated. The functional change examination and the autopsies were carried out, with which the injuries were evaluated from the Abbreviated Injury Scale (AIS) and the Injury Severity Score (ISS). The subjects in group I and group II experienced the caudocephalad loading at the peak pelvic accelerations of 108.92 ± 58.87 g and 139.13 g ± 78.54 g, with the peak abdomen pressures, 41.24 ± 16.89 kPa and 63.61 ± 65.83 kPa, respectively. The injuries of the spleen, lung, heart, and spine were detected frequently among the tested subjects. The maximal AIS (MAIS) of chest injuries was 4 in group I and 5 in group II, while both the MAIS of abdomen injuries in group I and group II were 5. The ISS in group II was 52.71 ± 6.13, significantly higher than in group I, 26.67 ± 5.02 (p < 0.05). The thoracoabdomen CCI injuries and the mechanical response addressed presently may be useful to conduct both the prevention studies against military or civilian injuries.
  • 机译 6岁婴儿正面碰撞试验中的低腰数值模拟
    摘要:This work studies descriptively the Head Injury Criterion (HIC) and Chest Severity Index (CSI), with a finite element model of the Hybrid III dummy type, for six-year-old subjects in a frontal vehicular collision, using the low-back booster (LBB) passive safety system. The vehicle seats and the passive safety systems were modelled in CAD (computer aided design) software. Then, the elements were analysed by the finite element method (FEM) in LS-DYNA® software. The boundary conditions were established for each study, according to the regulations established by the Federal Motor Vehicle Safety Standard (FMVSS), following the FMVSS 213 standard. The numerical simulations were performed during an interval of 120 ms and recording results every 1 ms. In order to analyse the efficiency of the system, the restraint performance of the LBB system is compared with the restraint configuration of the vehicle safety belt (VSB) only. The obtained injury criteria with the LBB system shows its ability to protect children in a frontal collision. The analyses allow obtaining the deceleration values to which the dummy head and chest was subjected. Of the studies herein performed, Study I: VSB obtained a HIC36 of 730.4 and CSI of 315.5, while Study II: LBB obtained a HIC36 of 554.3 and CSI of 281.9. The outcome shows that the restraint efficiency of each studied case differs. Used materials, the attachment system of the LBB, and the belt restraint system properly placed over the infant trunk are the main factors reducing the injury criteria rate.
  • 机译 基于肌肉激活和最佳负荷定向概念的肌肉专项康复训练方法
    摘要:Training based on muscle-oriented repetitive movements has been shown to be beneficial for the improvement of movement abilities in human limbs in relation to fitness, athletic training, and rehabilitation training. In this paper, a muscle-specific rehabilitation training method based on the optimal load orientation concept (OLOC) was proposed for patients whose motor neurons are injured, but whose muscles and tendons are intact, to implement high-efficiency resistance training for the shoulder muscles, which is one of the most complex joints in the human body. A three-dimensional musculoskeletal model of the human shoulder was used to predict muscle forces experienced during shoulder movements, in which muscles that contributed to shoulder motion were divided into 31 muscle bundles, and the Hill model was used to characterize the force-length properties of the muscle. According to the musculoskeletal model, muscle activation was calculated to represent the muscle force. Thus, training based on OLOC was proposed by maximizing the activation of a specific muscle under each posture of the training process. The analysis indicated that the muscle-specific rehabilitation training method based on the OLOC significantly improved the training efficiency for specific muscles. The method could also be used for trajectory planning, load magnitude planning, and evaluation of training effects.
  • 机译 壁虎式攀爬机器人的步态设计和轨迹规划
    摘要:Inspired by the dynamic gait adopted by gecko, we had put forward GPL (Gecko-inspired mechanism with a Pendular waist and Linear legs) model with one passive waist and four active linear legs. To further develop dynamic gait and reduce energy consumption of climbing robot based on the GPL model, the gait design and trajectory planning are addressed in this paper. According to kinematics and dynamics of GPL, the trot gait and continuity analysis are executed. The effects of structural parameters on the supporting forces are analyzed. Moreover, the trajectory of the waist is optimized based on system energy consumption. Finally, a bioinspired robot is developed and the prototype experiment results show that the larger body length ratio, a certain elasticity of the waist joint, and the optimized trajectory contribute to a decrease in the supporting forces and reduction in system energy consumption, especially negative forces on supporting feet. Further, the results in our experiments partly explain the reasonability of quadruped reptile's kinesiology during dynamic gait.
  • 机译 面向康复机器人的人体肩膀复合体的新骨架模型和运动节律分析
    摘要:Rehabilitation robotics has become a widely accepted method to deal with the training of people with motor dysfunction. In robotics medium training, shoulder repeated exercise training has been proven beneficial for improving motion ability of human limbs. An important and difficult paradigm for motor function rehabilitation training is the movement rhythm on the shoulder, which is not a single joint but complex and ingenious combination of bones, muscles, ligaments, and tendons. The most robots for rehabilitation were designed previously considering simplified biomechanical models only, which led to misalignment between robots and human shoulder. Current biomechanical models were merely developed for rehabilitation robotics design. This paper proposes a new hybrid spatial model based on joint geometry constraints to describe the movement of the shoulder skeletal system and establish the position analysis equation of the model by a homogeneous coordinate transformation matrix and vector method, which can be used to calculate the kinematics of human-robot integrated system. The shoulder rhythm, the most remarkable particularity in shoulder complex kinematics and important reference for shoulder training strategy using robotics, is described and analyzed via the proposed skeleton model by three independent variables in this paper. This method greatly simplifies the complexity of the shoulder movement description and provides an important reference for the training strategy making of upper limb rehabilitation via robotics.
  • 机译 离子聚合物-金属复合驱动器驱动仿生甲壳虫拍打飞行器
    摘要:During the last decades, the ionic polymer-metal composite (IPMC) received much attention because of its potential capabilities, such as large displacement and flexible bending actuation. In this paper, a biomimetic flapping air vehicle was proposed by combining the superiority of ionic polymer metal composite with the bionic beetle flapping principle. The blocking force was compared between casted IPMC and IPMC. The flapping state of the wing was investigated and the maximum displacement and flapping angle were measured. The flapping displacement under different voltage and frequency was tested. The flapping displacement of the wing and the support reaction force were measured under different frequency by experiments. The experimental results indicate that the high voltage and low frequency would get large flapping displacement.
  • 机译 使用流波形匹配的生物力学模型的病理语音源分析系统
    摘要:Voice production occurs through vocal cord and vibration coupled to glottal airflow. Vocal cord lesions affect the vocal system and lead to voice disorders. In this paper, a pathological voice source analysis system is designed. This study integrates nonlinear dynamics with an optimized asymmetric two-mass model to explore nonlinear characteristics of vocal cord vibration, and changes in acoustic parameters, such as fundamental frequency, caused by distinct subglottal pressure and varying degrees of vocal cord paralysis are analyzed. Various samples of sustained vowel /a/ of normal and pathological voices were extracted from MEEI (Massachusetts Eye and Ear Infirmary) database. A fitting procedure combining genetic particle swarm optimization and a quasi-Newton method was developed to optimize the biomechanical model parameters and match the targeted voice source. Experimental results validate the applicability of the proposed model to reproduce vocal cord vibration with high accuracy, and show that paralyzed vocal cord increases the model coupling stiffness.
  • 机译 通过非负矩阵分解从肌电信号中准确提取肌肉协同作用的初始化技术的比较
    摘要:The main goal of this work was to assess the performance of different initializations of matrix factorization algorithms for an accurate identification of muscle synergies. Currently, nonnegative matrix factorization (NNMF) is the most commonly used method to identify muscle synergies. However, it has been shown that NNMF performance might be affected by different kinds of initialization. The present study aims at optimizing the traditional NNMF initialization for data with partial or complete temporal dependencies. For this purpose, three different initializations are used: random, SVD-based, and sparse. NNMF was used to identify muscle synergies from simulated data as well as from experimental surface EMG signals. Simulated data were generated from synthetic independent and dependent synergy vectors (i.e., shared muscle components), whose activation coefficients were corrupted by simulating controlled degrees of correlation. Similarly, EMG data were artificially modified, making the extracted activation coefficients temporally dependent. By measuring the quality of identification of the original synergies underlying the data, it was possible to compare the performance of different initialization techniques. Simulation results demonstrate that sparse initialization performs significantly better than all other kinds of initialization in reconstructing muscle synergies, regardless of the correlation level in the data.
  • 机译 电动自行车事故中车祸的伤害源及相关性分析
    摘要:The knowledge about the injury source and correlation of riders in car-electric bicycle accident will be helpful in the cross validation of traces and vehicle safety design. In order to know more information about such kind of knowledge, 57 true car-electric bicycle accidents were reconstructed by PC-Crash and then data on injury information of riders were collected directly from the reconstructed cases. These collected data were validated by some existing research results firstly, and then 4 abnormal cases were deleted according to the statistical method. Finally, conclusions can be obtained according to the data obtained from the remaining 53 cases. Direct injuries of the head and right leg are from the road pavement upon low speed; the source laws of indirect head injuries are not obvious. Upon intermediate and high speed, the injuries of the above parts are from automobiles. Injuries of the left leg, femur, and right knee are from automobiles; left knee injuries are from automobiles, the road pavement and automobiles, respectively, upon low, intermediate, and high speed. The source laws of indirect torso injuries are not obvious upon intermediate and low speed, which are from automobiles upon high speed, while direct torso injuries are from the road pavement. And there is no high correlation between all parts of the injury of riders. The largest correlation coefficient was the head-left femur and left femur-right femur, which was 0.647, followed by the head-right femur (0.638) and head-torso which was 0.617.
  • 机译 具有嵌入式方形杆形离子聚合物金属复合材料的主动管形促动器,用于机器人辅助操纵
    摘要:This paper reports a new technique involving the design, fabrication, and characterization of an ionic polymer-metal composite- (IPMC-) embedded active tube, which can achieve multidegree-of-freedom (MODF) bending motions desirable in many applications, such as a manipulator and an active catheter. However, traditional strip-type IPMC actuators are limited in only being able to generate 1-dimensional bending motion. So, in this paper, we try to develop an approach which involves molding or integrating rod-shaped IPMC actuators into a soft silicone rubber structure to create an active tube. We modified the Nafion solution casting method and developed a complete sequence of a fabrication process for rod-shaped IPMCs with square cross sections and four insulated electrodes on the surface. The silicone gel was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D printing technology. By applying differential voltages to the four electrodes of each IPMC rod-shaped actuator, MDOF bending motions of the active tube can be generated. Experimental results show that such IPMC-embedded tube designs can be used for developing robotic-assisted manipulation.
  • 机译 基于Galfenol复合悬臂梁的磁致伸缩生物晶须传感器实现双向触觉。
    摘要:A magnetostrictive bioinspired whisker sensor based on a galfenol/beryllium-bronze/galfenol composite cantilever beam was developed in this work. According to the new design concept, the proposed whisker can output positive and negative voltages under different bending directions. Besides, the proposed whisker sensor can realize the bidirectional distance and microforce perception. Using the classical beam theory, a theoretical model was used to predict the output performance of the whisker. An experimental system was established to test the whisker's output performance. In the experiment, the designed whisker, compared with a traditional unimorph whisker, displayed an output voltage range of −240 to 240 mV. The parameters were as follows: the distance was 0–22 mm, with the microforce sensing range of 9.8–2744 mN, the average distance was 10.90 mm/mV, and the force sensitivity was 11.4 mN/mV. At last, obstacle perception was applied. The experiment showed that the proposed whisker sensor can realize the bidirection tactile perception in one-dimensional space. The work expands the function of the magnetostrictive bioinspired whisker, acquiring the multi-information for single-sensor system.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号