首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”)
【2h】

Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”)

机译:对塑造富铁聚集体(“铁雪”)的微生物的结构和代谢功能的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.
机译:微生物亚铁[Fe(II)]的氧化导致在德国中东部的分层褐煤矿湖中的氧化还原层上形成富含铁的宏观聚集体(“铁雪”)。我们旨在鉴定丰富的铁氧化和铁还原微生物,这些微生物可能参与了湖中两个pH值不同的氧化还原层中铁雪的形成和转化。通过共聚焦激光扫描显微镜检测到的各种形态的核酸和脂质染色微生物细胞均匀分布在所有铁雪样品中。主要的铁矿物似乎是schwertmannite,北部的针状体比中部盆地的样品短。在酸性中央湖盆(pH 3.3)中细菌总数16S rRNA基因拷贝的范围从5.0×10 8 克(干重) -1 到4.0×10 10 复制g(干重) -1 。基于总RNA的定量PCR将多达61%的代谢活性微生物群落分配给了与Fe氧化和Fe还原相关的细菌,这表明铁代谢是重要的代谢策略。大量基团的分子鉴定表明,铁雪表面是由化学自养性铁氧化剂(如酸性微生物,费罗威姆,酸性硫杆菌,硫杆菌和绿球藻)在氧化还原菌中形成的,并迅速被异养性铁还原剂(如嗜酸性,类似Albidiferax,和类杆菌。元蛋白质组学从北部盆地铁雪样品中产生了283种不同的蛋白质,蛋白质鉴定提供了其一些原位代谢过程的信息,例如初级生产(固定二氧化碳),呼吸作用,运动力和生存策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号