首页> 美国卫生研究院文献>Annales de G n ;tique et de S lection Animale >Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism
【2h】

Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism

机译:应用元组学技术了解瘤胃代谢产生的温室气体排放

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.
机译:瘤胃发酵产生的甲烷排放显着影响了人类学温室气体(GHG)的排放总量。新的元组学技术正在开始彻底改变我们对瘤胃微生物群落结构,代谢潜力和代谢活性的理解。在这里,我们探索与温室气体排放有关的这些发展。基于小亚基核糖体RNA序列分析的微生物瘤胃群落分析尚不能预测个别动物或治疗方法产生的甲烷排放量。很少有宏基因组学研究与温室气体排放直接相关。在这些研究中,高和低甲烷排放源之间丰度不同的主要基因包括参与甲烷生成的古细菌基因,其他显然与甲烷代谢无关的基因。与迄今为止的分类学分析不同,来自元基因组的基因组可能具有预测价值。此外,宏基因组分析比仅分类学描述更好地预测代谢功能,因为不同的分类单元共享具有相同功能的基因。元转录组学是对mRNA转录本丰度的研究,应该有助于了解微生物活性的动态,而不是基因丰度。迄今为止,只有一项研究将产甲烷基因的表达水平与甲烷排放量相关联,而基因丰度未能做到这一点。元蛋白质组学描述了生态系统中存在的蛋白质,因此可以说是微生物代谢的更好指示。二维聚丙烯酰胺凝胶电泳和shot弹枪肽测序方法均已用于瘤胃分析。在我们未发表的研究中,这两种方法均显示出大量的古细菌产甲烷酶,但都无法区分高和低排放物。代谢组学可以采取几种形式,这些形式似乎对甲烷排放具有预测价值。瘤胃代谢产物,牛奶脂肪酸谱,粪便长链醇和尿代谢产物均显示出令人鼓舞的结果。瘤胃微生物氨基酸代谢是反刍动物氮排放过多的根源,但迄今为止的代谢组学研究只能间接推断氮排放。元组学数据的注释取决于瘤胃微生物条目中通常较弱的数据库。因此,Hungate 1000项目和全球瘤胃普查计划对于改善序列/代谢信息的解释至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号