您现在的位置:首页>美国卫生研究院文献>American Journal of Physiology - Renal Physiology

期刊信息

  • 期刊名称:

    -

  • 刊频: Twice monthly, Jan. 2012-
  • NLM标题: Am J Physiol Renal Physiol
  • iso缩写: -
  • ISSN: -
  • 排序:
  • 显示:
  • 每页:
全选(0
<6/20>
2103条结果
  • 机译 组蛋白脱乙酰基酶6活性抑制剂ACY-1215可降低多囊肾疾病中的cAMP和囊肿生长
    摘要:Adult-onset autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either the PKD1 or PKD2 gene, leading to malfunction of their gene products, polycystin 1 or 2. Histone deacetylase 6 (HDAC6) expression and activity are increased in PKD1 mutant renal epithelial cells. Here we studied the effect of ACY-1215, a specific HDAC6 inhibitor, on cyst growth in ADPKD. Treatment with ACY-1215 slowed cyst growth in a mouse model of ADPKD that forms massive cysts within 3 wk after knockout of polycystin 1 function. It also prevented cyst formation in MDCK.2 cells, an in vitro model of cystogenesis, and in an ADPKD cell line derived from the proximal tubules from a pkd1−/−.mouse (PN cells). In PN cells ACY-1215 also reduced the size of already established cysts. We found that ACY-1215 lowered cAMP levels and protein expression of adenylyl cyclase 6. Our results suggest that HDAC6 could potentially serve as a therapeutic target in ADPKD.
  • 机译 肾损伤后ErbB4缺失加速肾纤维化
    摘要:Tubulointerstitial fibrosis (TIF) is a prominent factor in the progression of chronic kidney disease regardless of etiology. Avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4) expression levels were inversely correlated to renal fibrosis in human fibrotic kidneys. In both unilateral ureteral obstruction (UUO) and ischemia-reperfusion injury followed by uninephrectomy (IRI/UNx) mouse models, expression levels of ErbB4 were elevated in the early stage of renal injury. Using mice with global ErbB4 deletion except for transgenic rescue in cardiac tissue (ErbB4−/−ht+), we determined that UUO induced similar injury in proximal tubules compared with wild-type mice but more severe injury in distal nephrons. TIF was apparent earlier and was more pronounced following UUO in ErbB4−/−ht+ mice. With ErbB4 deletion, UUO injury inhibited protein kinase B phosphorylation and increased the percentage of cells in G2/M arrest. There was also increased nuclear immunostaining of yes-associated protein and increased expression of phospho-Mothers against decapentaplegic homolog 3, snail1, and vimentin. These results indicate that ErbB4 deletion accelerates the development and progression of renal fibrosis in obstructive nephropathy. Similar results were found in a mouse IRI/UNx model. In conclusion, increased expression of ErbB4 in the early stages of renal injury may reflect a compensatory effect to lessen tubulointerstitial injury.
  • 机译 肾血流动力学:胰高血糖素样肽-1激动剂的肾血流动力学作用是由一氧化氮介导的而不是由前列腺素介导的
    摘要:The incretin hormone, glucagon-like peptide-1 (GLP-1), is known for responding to dietary fat and carbohydrate. It elicits effects on pancreas, gut, and brain to stabilize blood glucose levels. We have previously reported that the GLP-1 agonist, exenatide, vasodilates the kidney and suppresses proximal reabsorption. The present study was undertaken to determine whether the renal effects of exenatide are mediated by nitric oxide (NO) and/or prostaglandins. Inulin clearance (glomerular filtration rate, GFR) and urine flow rate (UV) were measured in anesthetized rats before and during exenatide infusion (1 nmol/h iv). Animals were pretreated with cyclooxygenase (COX) inhibitor (meclofenamate), NO synthase (NOS) inhibitor (NG-monomethyl-l-arginine, l-NMMA), NO clamp (l-NMMA + sodium nitroprusside), or placebo. Effectiveness of COX inhibition was tested by measuring urinary prostaglandin E2 (UPGE2). Effectiveness of NOS blockade and NO clamp was determined by urinary NO degradation products (UNOx). Exenatide increased GFR, UV, UPGE2, and UNOx. Pretreatment with meclofenamate reduced UPGE2 by 75% and reduced the effect of exenatide on UPGE2 by 30% but did not modify the effects of exenatide on GFR or UV. Pretreatment with l-NMMA reduced UNOx and the impact of exenatide on GFR and UV by 50%. Pretreatment by NO clamp did not prevent UNOx from increasing during exenatide but blunted the effects of exenatide on GFR and UV. In conclusion, exenatide is a potent renal vasodilator and diuretic in the rat. These effects of exenatide are insensitive to COX inhibition but are mediated, in part, by NO.
  • 机译 肾纤维化的机制和治疗:建立更好的小鼠模型来研究顺铂引起的肾脏损伤
    摘要:Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury.
  • 机译 赖氨酸乙酰化的动态调节:乙酰转移酶和脱乙酰酶活性之间的平衡
    摘要:Reversible posttranslational modification of proteins is a critically important process in physiological regulation in all tissues, including the kidney. Lysine acetylation occurs in all organisms, including prokaryotes, and is regulated by a balance between the lysine acetyltransferases (adding an acetyl group to the ε-amino group of a lysine) and deacetylases (removing it). The kidney is an organ rich with acetylated lysines, which map to >2,000 unique histone and nonhistone proteins. However, the functional significance of these modifications remains to be discovered. Here, we have compiled gene lists of the acetyltransferases and deacetylases in the mammalian genomes and mapped their mRNA expression along the renal tubule. These lists will be useful for generating targeted approaches to test the physiological or pathophysiological significance of lysine acetylation changes in the kidney.
  • 机译 Cux1在ADPKD小鼠模型中促进细胞增殖和多囊肾疾病进展
    摘要:Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1CD;Cux1tm2Ejn). While kidneys isolated from newborn Pkd1CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1CD;Cux1tm2Ejn−/− mice did not show any cysts. Because Cux1tm2Ejn−/− are perinatal lethal, we evaluated Pkd1CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1CD;Cux1tm2Ejn−/− mice, newborn Pkd1CD;Cux1tm2Ejn+/− mice did not show any cysts. Comparison of Pkd1CD and Pkd1CD;Cux1tm2Ejn+/− mice at later stages of development showed a reduction in the severity of PKD in the Pkd1CD;Cux1tm2Ejn+/− mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27.
  • 机译 肾脏疾病的炎症和炎症介质:成年女性SHR中较高的转化生长因子β取决于血压但不能解释肾脏T调节细胞的性别差异
    摘要:Female spontaneously hypertensive rats (SHR) have more renal regulatory T cells (Tregs) than males, and greater levels of Tregs in female SHR are dependent on blood pressure (BP). However, the molecular mechanism responsible for greater Tregs in female SHR is unknown. Transforming growth factor (TGF)-β is a pleiotropic cytokine critical in the differentiation of naïve T cells into Tregs, and female SHR have higher TGF-β excretion than male SHR. The goals of the current study were to test the hypotheses that 1) female SHR have greater renal TGF-β expression than male SHR, which is dependent on BP and 2) neutralizing TGF-β will decrease renal Tregs in female SHR. Renal cortices were isolated from 5- and 13-wk-old male and female SHR, and TGF-β levels were measured via Western blot and ELISA. Adult female SHR have more free, active TGF-β1 than 5-wk-old female SHR (46% more) or male SHR (44% more than 5-wk-old males and 56% more than 13-wk-old male SHR). We confirmed greater TGF-β1 in adult female SHR was due to increases in BP and not sexual maturation by measuring TGF-β1 levels following treatment with BP-lowering drugs or ovariectomy. Separate female SHR were treated with an antibody to TGF-β1,2,3; BP was measured, and T cells were assessed in whole blood and the kidney. Neutralizing TGF-β had no effect on BP, although circulating Tregs decreased by 32%, while Th17 cells increased by 64%. Renal Tregs were not altered by antibody treatment, although Th17 cells were decreased by 61%. In conclusion, although TGF-β promotes circulating Tregs in female SHR, it does not account for the sex difference in renal Tregs in SHR.
  • 机译 肾脏疾病的炎症和炎症介质:急性肾脏损伤的保护途径中独特的性别和年龄依赖性效应
    摘要:Sex and age influence susceptibility to acute kidney injury (AKI), with young females exhibiting lowest incidence. In these studies, we investigated mechanisms which may underlie the sex/age-based dissimilarities. Cisplatin (Cp)-induced AKI resulted in morphological evidence of injury in all groups. A minimal rise in plasma creatinine (PCr) was seen in Young Females, whereas in Aged Females, PCr rose precipitously. Relative to Young Males, Aged Males showed significantly, but temporally, comparably elevated PCr. Notably, Aged Females showed significantly greater mortality, whereas Young Females exhibited none. Tissue KIM-1 and plasma NGAL were significantly lower in Young Females than all others. IGFBP7 levels were modestly increased in both Young groups. IGFBP7 levels in Aged Females were significantly elevated at baseline relative to Aged Males, and increased linearly through day 3, when these levels were comparable in both Aged groups. Plasma cytokine levels similarly showed a pattern of protective effects preferentially in Young Females. Expression of the drug transporter MATE2 did not explain the sex/age distinctions. Heme oxygenase-1 (HO-1) levels (~28-kDa species) showed elevation at day 1 in all groups with highest levels seen in Young Males. Exclusively in Young Females, these levels returned to baseline on day 3, suggestive of a more efficient recovery. In aggregate, we demonstrate, for the first time, a distinctive pattern of response to AKI in Young Females relative to males which appears to be significantly altered in aging. These distinctions may offer novel targets to exploit therapeutically in both females and males in the treatment of AKI.
  • 机译 辣椒素敏感的C纤维传入途径在控制完整和脊髓损伤的小鼠排尿中的作用
    摘要:We examined bladder and urethral sphincter activity in mice with or without spinal cord injury (SCI) after C-fiber afferent desensitization induced by capsaicin pretreatment and changes in electrophysiological properties of mouse bladder afferent neurons 4 wk after SCI. Female C57BL/6N mice were divided into four groups: 1) spinal intact (SI)-control, 2) SI-capsaicin pretreatment (Cap), 3) SCI-control, and 4) SCI-Cap groups. Continuous cystometry and external urethral sphincter (EUS)-electromyogram (EMG) were conducted under an awake condition. In the Cap groups, capsaicin (25, 50, or 100 mg/kg) was injected subcutaneously 4 days before the experiments. In the SI-Cap group, 100 mg/kg capsaicin pretreatment significantly increased bladder capacity and decreased the silent period duration of EUS/EMG compared with the SI-control group. In the SCI-Cap group, 50 and 100 mg/kg capsaicin pretreatment decreased the number of nonvoiding contractions (NVCs) and the duration of reduced EUS activity during voiding, respectively, compared with the SCI-control group. In SCI mice, hexamethonium, a ganglionic blocker, almost completely blocked NVCs, suggesting that they are of neurogenic origin. Patch-clamp recordings in capsaicin-sensitive bladder afferent neurons from SCI mice showed hyperexcitability, which was evidenced by decreased spike thresholds and increased firing rate compared with SI mice. These results indicate that capsaicin-sensitive C-fiber afferent pathways, which become hyperexcitable after SCI, can modulate bladder and urethral sphincter activity in awake SI and SCI mice. Detrusor overactivity as shown by NVCs in SCI mice is significantly but partially dependent on capsaicin-sensitive C-fiber afferents, whereas the EUS relaxation during voiding is enhanced by capsaicin-sensitive C-fiber bladder afferents in SI and SCI mice.
  • 机译 神经调节作用在逼尿肌运动不足的肥胖易发大鼠模型中的作用
    摘要:Obesity is a global epidemic associated with an increased risk for lower urinary tract dysfunction. Inefficient voiding and urinary retention may arise in late-stage obesity when the expulsive force of the detrusor smooth muscle cannot overcome outlet resistance. Detrusor underactivity (DUA) and impaired contractility may contribute to the pathogenesis of nonobstructive urinary retention. We used cystometry and electrical stimulation of peripheral nerves (pudendal and pelvic nerves) to characterize and improve bladder function in urethane-anesthetized obese-prone (OP) and obese-resistant (OR) rats following diet-induced obesity (DIO). OP rats exhibited urinary retention and impaired detrusor contractility following DIO, reflected as increased volume threshold, decreased peak micturition pressure, and decreased voiding efficiency (VE) compared with OR rats. Electrical stimulation of the sensory branch of the pudendal nerve did not increase VE, whereas patterned bursting stimulation of the motor branch of the pudendal nerve increased VE twofold in OP rats. OP rats required increased amplitude of electrical stimulation of the pelvic nerve to elicit bladder contractions, and maximum evoked bladder contraction amplitudes were decreased relative to OR rats. Collectively, these studies characterize a novel animal model of DUA that can be used to determine pathophysiology and suggest that neuromodulation is a potential management option for DUA.
  • 机译 Src家族激酶在慢性肾脏疾病中的作用
    摘要:Src family kinases (SFKs) belong to nonreceptor protein tyrosine kinases and have been implicated in the regulation of numerous cellular processes, including cell proliferation, differentiation, migration and invasion, and angiogenesis. The role and mechanisms of SFKs in tumorgenesis have been extensively investigated, and some SFK inhibitors are currently under clinical trials for tumor treatment. Recent studies have also demonstrated the importance of SFKs in regulating the development of various fibrosis-related chronic diseases (e.g., idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, and systemic sclerosis). In this article, we summarize the roles of SFKs in various chronic kidney diseases, including glomerulonephritis, diabetic nephropathy, human immunodeficiency virus-associated nephropathy, autosomal dominant form of polycystic kidney disease, and obesity-associated kidney disease, and discuss the mechanisms involved.
  • 机译 负鼠Didelphis virginiana肾OK近端小管细胞系的转录组
    摘要:The OK cell line derived from the kidney of a female opossum Didelphis virginiana has proven to be a useful model in which to investigate the unique regulation of ion transport and membrane trafficking mechanisms in the proximal tubule (PT). Sequence data and comparison of the transcriptome of this cell line to eutherian mammal PTs would further broaden the utility of this culture model. However, the genomic sequence for D. virginiana is not available and although a draft genome sequence for the opossum Monodelphis domestica (sequenced in 2012 by the Broad Institute) exists, transcripts sequenced from both species show significant divergence. The M. domestica sequence is not highly annotated, and the majority of transcripts are predicted rather than experimentally validated. Using deep RNA sequencing of the D. virginiana OK cell line, we characterized its transcriptome via de novo transcriptome assembly and alignment to the M. domestica genome. The quality of the de novo assembled transcriptome was assessed by the extent of homology to sequences in nucleotide and protein databases. Gene expression levels in the OK cell line, from both the de novo transcriptome and genes aligned to the M. domestica genome, were compared with publicly available rat kidney nephron segment expression data. Our studies demonstrate the expression in OK cells of numerous PT-specific ion transporters and other key proteins relevant for rodent and human PT function. Additionally, the sequence and expression data reported here provide an important resource for genetic manipulation and other studies on PT cell function using these cells.
  • 机译 肾脏电解质转运的性别差异。 I. AT1a受体在噻嗪类敏感性Na + -Cl-共转运子活性和雌雄小鼠表达中的作用
    摘要:We studied gender differences in Na+-Cl cotransporter (NCC) activity and expression in wild-type (WT) and AT1a receptor knockout (KO) mice. In renal clearance experiments, urine volume (UV), glomerular filtration rate, absolute Na+ (ENa) and K+ (EK), and fractional Na+ (FENa) and K+ excretion were measured and compared at peak changes after bolus intravenous injection of hydrochlorothiazide (HCTZ; 30 mg/kg). In WT, females responded more strongly than males to HCTZ, with larger fractional increases of UV (7.8- vs. 3.4-fold), ENa (11.7- vs. 5.7-fold), FENa (7.9- vs. 4.9-fold), and EK (2.8- vs. 1.4-fold). In contrast, there were no gender differences in the responses to the diuretic in KO mice; HCTZ produced greater effects on male KO than on WT but similar effects on females. In WT, total (tNCC) and phosphorylated (pNCC) NCC protein expressions were 1.8- and 4.6-fold higher in females compared with males (P < 0.05), consistent with the larger response to HCTZ. In KO mice, tNCC and pNCC increased significantly in males to levels not different from those in females. There were no gender differences in the expression of the Na+/H+ exchanger (NHE3) in WT; NHE3 protein decreased to similar extents in male and female KO animals, suggesting AT1a-mediated NHE3 expression in proximal tubules. The resulting increase in delivery of NaCl to the distal nephron may underlie increased NCC expression and activity in mice lacking the AT1a receptor.
  • 机译 特别K:一旦乐趣结束EMT就会到达膀胱
    摘要:
  • 机译 MIF-2 / D-DT通过依赖SLPI和ATF4的机制增强近端小管细胞再生
    摘要:Macrophage migration inhibitory factor (MIF) is a cytokine with pleiotropic actions that is produced by several organs and cell types. Depending on the target cell and the inflammatory context, MIF can engage its two component receptor complex CD74 and CD44 and the chemokine receptors CXCR2/4. MIF is constitutively expressed in renal proximal tubular cells, stored in intracellular preformed pools, and released at a low rate. Recently, a second MIF-like protein (i.e., MIF-2/D-DT) has been characterized in mammals. Our study was aimed at examining the role of MIF-2/D-DT, which mediates tissue protection in the heart, in tubular cell regeneration from ischemia-reperfusion injury. We found that Mif−/−, Mif-2−/−, and Cd74−/− mice had significantly worse tubular injury compared with wild-type (WT) control mice and that treatment with MIF-2/D-DT significantly improved recovery of injured epithelial cells. RNAseq analysis of kidney tissue from the ischemia-reperfusion injury model revealed that MIF-2/D-DT treatment stimulates secretory leukocyte proteinase inhibitor (SLPI) and cyclin D1 expression. MIF-2/D-DT additionally activates of eukaryotic initiation factor (eIF) 2α and activating transcription factor (ATF) 4, two transcription factors involved in the integrated stress response (ISR), which is a cellular stress response activated by hypoxia, nutrient deprivation, and oxygen radicals. MIF-2/D-DT also inhibited apoptosis and induced autophagy in hypoxia-treated mouse proximal tubular (MPT) cells. These results indicate that MIF-2/D-DT is an important factor in tubular cell regeneration and may be of therapeutic utility as a regenerative agent in the clinical setting of ischemic acute kidney injury.
  • 机译 肾脏疾病的炎症和炎症介质:血红素加氧酶-1减轻肾近端小管细胞的肥大症
    摘要:Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death, which contributes to damage in models of acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytoprotective enzyme induced in response to cellular stress, and is protective against AKI because of its antiapoptotic and anti-inflammatory properties. However, the role of HO-1 in regulating ferroptosis is unclear. The purpose of this study was to elucidate the role of HO-1 in regulating ferroptotic cell death in renal proximal tubule cells (PTCs). Immortalized PTCs obtained from HO-1+/+ and HO-1−/− mice were treated with erastin or RSL3, ferroptosis inducers, in the presence or absence of antioxidants, an iron source, or an iron chelator. Cells were assessed for changes in morphology and metabolic activity as an indicator of cell viability. Treatment of HO-1+/+ PTCs with erastin resulted in a time- and dose-dependent increase in HO-1 gene expression and protein levels compared with vehicle-treated controls. HO-1−/− cells showed increased dose-dependent erastin- or RSL3-induced cell death in comparison to HO-1+/+ PTCs. Iron supplementation with ferric ammonium citrate in erastin-treated cells decreased cell viability further in HO-1−/− PTCs compared with HO-1+/+ cells. Cotreatment with ferrostatin-1 (ferroptosis inhibitor), deferoxamine (iron chelator), or N-acetyl-l-cysteine (glutathione replenisher) significantly increased cell viability and attenuated erastin-induced ferroptosis in both HO-1+/+ and HO-1−/− PTCs. These results demonstrate an important antiferroptotic role of HO-1 in renal epithelial cells.
  • 机译 跨性别移植改变了基因表达并增强了移植肾脏的炎症反应
    摘要:Kidney transplantation (KTX) is a life-saving procedure for patients with end-stage renal disease. Expression levels of many genes in the kidney vary between males and females, which may play an essential role in the sex differences in graft function. However, whether these differences are affected after cross-sex-KTX is unknown. In the present study, we assessed postoperative changes in genotype, function, and inflammatory responses of the grafts in same-sex- and cross-sex-KTX. Single kidney transplants were performed between same and different sex C57BL/6 mice paired into four combination groups: female donor/female recipient (F/F); male donor/male recipient (M/M); female donor/male recipient (F/M); and male donor/female recipient (M/F). The remnant native kidney was removed 4 days posttransplant. Expression levels of genes related to the contractility of the afferent arteriole and tubular sodium reabsorption were assessed. Same-sex-KTX did not significantly alter the magnitude or sex difference pattern of gene expression in male or female grafts. Cross-sex-KTX showed an attenuated sex difference in gene expressions. The measurements of endothelin 1, endothelin ETA receptor, Na+-K-2Cl cotransporter 2 (NKCC2), and epithelial Na+ channels (ENaC) subunits exhibited decreases in M/F compared with M/M and increases in F/M compared with F/F. There were no significant differences in hemodynamics or sodium excretion in response to acute volume expansion for any sex combinations. Cross-sex-KTX stimulated more robust inflammatory responses than same-sex-KTX. IL-6 and KC mRNA levels elevated 5- to 20-fold in cross-sex-KTX compared with same-sex-KTX. In conclusion, cross-sex-KTX alters gene expression levels and induces inflammatory responses, which might play an important role in long-term graft function.
  • 机译 精氨酸酶2介导肾脏缺血再灌注损伤
    摘要:Novel therapeutic interventions for preventing or attenuating kidney injury following ischemia-reperfusion injury (IRI) remain a focus of significant interest. Currently, there are no definitive therapeutic or preventive approaches available for ischemic acute kidney injury (AKI). Our objective is to determine 1) whether renal arginase activity or expression is increased in renal IRI, and 2) whether arginase plays a role in development of renal IRI. The impact of arginase activity and expression on renal damage was evaluated in male C57BL/6J (wild type) and arginase-2 (ARG2)-deficient (Arg2−/−) mice subjected to bilateral renal ischemia for 28 min, followed by reperfusion for 24 h. ARG2 expression and arginase activity significantly increased following renal IRI, paralleling the increase in kidney injury. Pharmacological blockade or genetic deficiency of Arg2 conferred kidney protection in renal IRI. Arg2−/− mice had significantly attenuated kidney injury and lower plasma creatinine and blood urea nitrogen levels after renal IRI. Blocking arginases using S-(2-boronoethyl)-l-cysteine (BEC) 18 h before ischemia mimicked arginase deficiency by reducing kidney injury, histopathological changes and kidney injury marker-1 expression, renal apoptosis, kidney inflammatory cell recruitment and inflammatory cytokines, and kidney oxidative stress; increasing kidney nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation, kidney peroxisome proliferator-activated receptor-γ coactivator-1α expression, and mitochondrial ATP; and preserving kidney mitochondrial ultrastructure compared with vehicle-treated IRI mice. Importantly, BEC-treated eNOS-knockout mice failed to reduce blood urea nitrogen and creatinine following renal IRI. These findings indicate that ARG2 plays a major role in renal IRI, via an eNOS-dependent mechanism, and that blocking ARG2 activity or expression could be a novel therapeutic approach for prevention of AKI.
  • 机译 肾上皮细胞的细胞特异性qRT-PCR在鼠收集管中揭示了一种新的先天免疫特征
    摘要:The urinary tract is usually culture negative despite its close proximity to microbial flora. The precise mechanism by which the kidneys and urinary tract defends against infection is not well understood. The initial kidney cells to encounter ascending pathogens are the collecting tubule cells that consist of principal cells (PCs) that express aquaporin 2 (AQP2) and intercalated cells (ICs) that express vacuolar H+-ATPase (V-ATPase, B1 subunit). We have previously shown that ICs are involved with the human renal innate immune defense. Here we generated two reporter mice, VATPase B1-cre+tdT+ mice to fluorescently label ICs and AQP2-cre+tdT+ mice to fluorescently label PCs, and then performed flow sorting to enrich PCs and ICs for analysis. Isolated ICs and PCs along with proximal tubular cells were used to measure antimicrobial peptide (AMP) mRNA expression. ICs and PCs were significantly enriched for AMPs. Isolated ICs responded to uropathogenic Escherichia coli (UPEC) challenge in vitro and had higher RNase4 gene expression than control while both ICs and PCs responded to UPEC challenge in vivo by upregulating Defb1 mRNA expression. To our knowledge, this is the first report of isolating murine collecting tubule cells and performing targeted analysis for multiple classes of AMPs.
  • 机译 应对肾单位损失:有价运输
    • 作者:Alan M. Weinstein
    • 刊名:American Journal of Physiology - Renal Physiology
    • -1年第2期
    摘要:

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号