您现在的位置:首页>美国卫生研究院文献>American Journal of Cancer Research

期刊信息

  • 期刊名称:

    -

  • 刊频: Quarterly
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<4/20>
1504条结果
  • 机译 SH3BGRL2在乳腺癌的生长和转移中发挥双重作用,并受TGF-β1的调节
    摘要:SH3 domain-binding glutamic acid-rich-like protein 2 (SH3BGRL2) is a poorly defined member of the SH3BGR gene family with potential roles in cell differentiation and tissue development. Here, we report for the first time that SH3BGRL2 exerts a dual function in breast tumor growth and metastasis. SH3BGRL2 was downregulated in a subset of primary breast tumors, and suppressed breast cancer cell proliferation and colony formation and xenograft tumor growth . Strikingly, SH3BGRL2 enhanced breast cancer cell migratory, invasive, and lung metastatic capacity. Mechanistic investigations revealed that SH3BGRL2 interacted with and transcriptionally repressed spectrin alpha, non-erythrocytic 1 (SPTAN1) and spectrin beta, non-erythrocytic 1 (SPTBN1), two important cytoskeletal proteins. Functional rescue assays further demonstrated that depletion of SH3BGRL2 reduced breast cancer cell invasive potential, which was partially rescued by knockdown of SPTAN1 and SPTBN1 using specific small interfering RNA. Moreover, transforming growth factor-β1 (TGF-β1) transcriptionally activated SH3BGRL2 expression in breast cancer cells through the canonical TGF-β receptor-Smad pathway. Collectively, these results establish a dual function of SH3BGRL2 in breast cancer growth and metastasis and uncover SH3BGRL2 as a downstream target of the TGF-β1 signaling pathway in breast cancer cells.
  • 机译 干扰素调节因子-1通过下调RAD51在胃癌中的表达来抑制DNA损伤反应并逆转化疗耐药性
    摘要:Recent studies have shown that IRF-1 plays a significant role in various tumour-induced chemoresistance, but its role and mechanism in gastric cancer-associated chemoresistance are not clear. Our study showed that IRF-1 expression could reverse gastric cancer-related chemoresistance. Dysregulated DNA repair is an important cause of chemoresistance. We established a chemoresistant gastric cancer cell line and found that drug-resistant gastric cancer cells had increased DNA repair ability and that IRF-1 regulated DNA damage repair. Further studies showed that IRF-1 inhibited the expression of RAD51 directly by binding to the RAD51 promoter to affect DNA damage repair; this binding reversed resistance. However, restoring the expression of RAD51 halted the inhibitory effect of IRF-1 partially. Also, we revealed that the overexpression of IRF-1 in a mouse model synergized with chemotherapeutic drugs to inhibit tumour growth. Finally, IRF-1 expression correlated with RAD51 expression in gastric cancer specimens. The expression of IRF-1 and RAD51 are both related to the survival duration of patients with gastric cancer. These results suggest that targeting IRF-1-RAD51 could be an effective approach to reversing multidrug resistance in gastric cancer.
  • 机译 Hispidulin防止缺氧诱导的人结肠癌细胞上皮-间质转化
    摘要:
  • 机译 PTTG通过FAK / Akt / mTOR信号传导上调EMMPRIN促进人乳腺癌细胞的侵袭
    摘要:
  • 机译 冰山一角:circRNA在血液恶性肿瘤中的作用
    摘要:Circular RNAs (circRNAs) are a new class of covalently closed RNA molecules whose 3’- and 5’-ends are linked by a back-splicing event. Emerging evidence has shown that circRNAs play a vital role in the occurrence and development of many diseases and are promising biomarkers and therapeutic targets. However, knowledge of circRNAs in hematological malignancies is limited. In this review, the biogenesis, categories, characteristics, and functions of circRNAs are summarized, especially the roles of circRNAs in hematopoiesis and hematological malignancies.
  • 机译 肿瘤细胞在乳腺癌中的阴阳效应:从肿瘤相关巨噬细胞与癌症相关脂肪细胞之间的串扰机制
    摘要:
  • 机译 tRNA衍生片段在癌症中的作用:癌症中新的诊断和治疗靶标tRF
    摘要:Recent studies have revealed that tRNAs are not always the terminal molecules and small RNA fragments can be mapped to precursor tRNA sequences or mature tRNA sequences. tRNA-derived fragments (tRFs) are a novel class of small RNAs in miRNA-size found in a diverse range of organisms and can be the source of small regulatory RNAs, a previously unanticipated concept. tRFs have a diverse range of effects on cells involving in cell differentiation and homeostasis. They play a critical role in pathological processes, particularly in cancer, and therefore can modulate complicated regulatory networks. Recent studies on the role of tRFs in tumorigenesis suggest that they are promising targets for diagnosis and therapeutics. Improvement in experimental and computational approaches permit a greater understanding of the regulatory networks and will have a significant impact on both basic and clinical research.
  • 机译 妇科恶性肿瘤中的HIPPO途径
    摘要:The Hippo pathway has been initially discovered by screening genes that regulate organ size in . Recent studies have highlighted the role of the Hippo pathway in controlling organ size, tissue homeostasis and regeneration, and signaling dysregulation, especially the overactivation of the transcriptional coactivator YAP/TAZ, which leads to uncontrolled cell growth and malignant transformation. The core components of the Hippo pathway may initiate tumorigenesis by inducing tumor stem cells and proliferation, ultimately leading to metastasis and drug resistance, which occurs extensively in gynecological malignancies, including cervical cancer, ovarian cancer, and endometrial cancer. In this review, we attempt to systematically summarize recent progress in our understanding of the mechanism of Hippo pathway regulation in tumorigenesis and the mechanisms that underlie alterations during gynecological malignancies, as well as new therapeutic strategies.
  • 机译 FLNA通过诱导上皮-间质转化和smad2信号通路促进大肠癌的化学耐药性
    摘要:
  • 机译 PDCD4通过抑制p62-Nrf2信号通路和上调Keap1表达来抑制肺肿瘤发生
    摘要:Programmed cell death 4 (PDCD4) suppresses tumorigenesis, tumor progression, and invasion by inhibiting transcription and translation of oncogenes. However, the role of PDCD4 in lung tumorigenesis is unclear. Sequestosome1/p62 mediates cell proliferation, survival, and death through multiple signaling pathways, including autophagy and cell metabolism. p62/SQSTM1 is transcriptional target of Nrf2 and an important regulator of tumor growth. The aim of this study was to clarify whether and how PDCD4 regulates the p62-Nrf2 pathway, and how this regulation relates to tumorigenesis in human lung cancer cells. We established two stable human lung cancer cell lines, A549 and H460 that each overexpressed PDCD4. We found that PDCD4 overexpression decreased p62 expression levels and inhibited cell proliferation, and also increased the expression levels of cleaved PARP and cleaved caspase 3. Knockdown of p62 markedly increased the apoptotic rate of A549 and H460 cells overexpressing PDCD4. Furthermore levels of the epithelial-mesenchymal transition-related markers Slug, Snail, Twist1 and Vimentin were decreased and expression level of E-cadherin was increased in PDCD4-overexpressing cells. We also found that PDCD4 suppressed transcriptional activation of Nrf2 (an upstream regulator of p62) and increased endogenous levels of Keap1 (a negative regulator of Nrf2). Upregulation of Keap1 induced apoptosis and inhibited cell proliferation by suppressing activity of the p62-Nrf2 pathway in PDCD4-overexpressing cells. As anticipated, results from a mouse xenograft model showed that PDCD4 overexpression in xenografts inhibited cell proliferation and tumorigenesis. Taken together, our results demonstrate that PDCD4 overexpression, which increased Keap1 expression, reduces the levels and activity of the p62-Nrf2 pathway, thereby inhibiting tumorigenesis. Our findings suggest that PDCD4 may be a potential target for lung cancer therapies.
  • 机译 辐射介导的抽象效应和影响该效应的因素的实验模型
    摘要:Radiotherapy (RT) is the primary treatment for cancer. Ionizing radiation from RT induces tumor damage at the irradiated site, and, although clinically infrequent, may cause regression of tumors distant from the irradiated site-a phenomenon known as the abscopal effect. Recently, the abscopal effect has been related to prolongation of overall survival time in cancer patients, though the factors that influence the abscopal effect are not well understood. The aim of this study is to clarify the factors influencing on abscopal effect. Here, we established a mouse model in which we induced the abscopal effect. We injected MC38 (mouse colon adenocarcinoma) cells subcutaneously into C57BL/6 mice at two sites. Only one tumor was irradiated and the sizes of both tumors were measured over time. The non-irradiated-site tumor showed regression, demonstrating the abscopal effect. This effect was enhanced by an increase in the irradiated-tumor volume and by administration of anti-PD1 antibody. When the abscopal effect was induced by a combination of RT and anti-PD1 antibody, it was also influenced by radiation dose and irradiated-tumor volume. These phenomena were also verified in other cell line, B16F10 cells (mouse melanoma cells). These findings provide further evidence of the mechanism for, and factors that influence, the abscopal effect in RT.
  • 机译 由最佳剂量的铂化合物触发的T细胞募集有助于在结肠癌的小鼠模型中顺序性PD-1阻断的治疗功效
    摘要:Recently, the combination of platinum chemotherapy with PD-1/PD-L1 pathway blockades has shown synergistic efficacy in a few clinical trials. However, the exact mechanisms and the optimized sequence of such combinations are not fully clear. In this study, we combined different doses of platinum agents (cisplatin or oxaliplatin) with sequential therapy of PD-1 blockade therapy (anti-PD-1 antibody or anti-PD-L1 antibody) to treat established MC38 murine colon tumors. Although 10 mg/kg platinum (cisplatin or oxaliplatin) showed no significant effect on tumor growth, its combination with sequential anti-PD-1 antibody administration caused complete tumor remission in 80-100% mice. The synergic therapeutic efficacy was found to be associated with more effector and less exhausted CD8 T cell infiltration in the tumor sites. Platinum chemotherapy is generally considered immunosuppressive, with lymphopenia and neutropenia being common side effects. However, our data showed that high-dose (20 mg/kg) platinum treatment induced lymphopenia in MC38 tumor-bearing mice, and low-dose (10 mg/kg) treatment augmented the T cell response with an increased number of peripheral T cells. Notably, increased numbers of PD-1 positive CD8 T cells were found in draining lymph nodes, peripheral blood and tumor tissues three days after 10 mg/kg oxaliplatin treatment, and increased numbers of CD8 T cells and apoptotic tumor cells were detected at the edge of tumor tissues. Further investigation showed that the death of tumor cells induced by platinum compounds promoted T cell activation. Moreover, increased expression of T cell-attracting chemokines (CXCL9, CXCL10 and CCL5) was detected in MC38 cells after platinum treatment. These data indicated that the optimal dose of platinum chemotherapy could trigger T cell activation and recruitment into tumors, and sequential PD-1 blockade could prevent newly arriving T cell from becoming exhausted in tumor sites. These findings highlight the importance of optimizing the dose and timing of platinum chemotherapy combined with PD-1 blockade and provide an indication for the improvement of combined therapies in clinical trials.
  • 机译 组蛋白脱甲基酶KDM4C通过共刺激因子STAT3激活NSCLC中的HIF1α/ VEGFA信号
    摘要:Tumor development is accompanied by high hypoxia and a dense network of immature vessels. The hypoxia-inducible factor/vascular endothelial growth factor (HIF/VEGF) signaling pathway is activated in various solid tumors. It is thought that HIF/VEGF signaling activation results from intratumoral hypoxia partly. Multiple studies have reported that VEGF is a common target gene for both transcription factors STAT3 and HIF1. KDM4C has also been reported to function as a co-activation factor for HIF-1β/VEGF signaling activation. In this manuscript. Our results demonstrate that KDM4C promotes NSCLC tumor angiogenesis by transcriptionally activating HIF1α/VEGFA signaling pathway. We also find that STAT3 functions as a costimulatory factor in this process. This pathway opens a potential therapeutic window for the treatment of NSCLC.
  • 机译 三氟吡啶可选择性抑制三阴性乳腺癌的细胞生长并诱导细胞凋亡
    摘要:Triple-negative breast cancer (TNBC) is one of the most aggressive cancers with a high rate of recurrence and metastasis. Trifluridine (TFT) is a thymidine analog to target thymidylate synthase (TS) and has potent ant-herpes simplex virus activity. However, little is known whether and how TFT treatment can modulate the growth of TNBC. In this study, we found that treatment with TFT selectively inhibited the proliferation of TNBC cells and triggered their apoptosis. TFT treatment significantly up-regulatd the expression of G1 phase inhibitor p21 and p27, and pro-apoptotic factor γ-H2AX, Bax and cleaved caspase-7 in TNBC cells. TFT treatment significantly down-regulated the expression of proliferating cell nuclear antigen (PCNA), minichromosome maintenance component 7 (MCM7) and anti-apoptotic Bcl-2 in TNBC cells. TFT treatment significantly mitigated the growth of implanted mouse TNBC in vivo, associated with increased expression of γ-H2AX and cleaved caspase-7 in mouse TNBC tumors. TS expression was up-regulated in breast cancer, particularly in TNBC tissues, and up-regulated TS expression was significantly associated with a shorter overall survival and disease free survival in TNBC patients. TS silencing selectively decreased the proliferation of TNBC cells, but did not trigger their apoptosis. Treatment with TFT induced DNA double strand break (DSB) and damages in TNBC cells. Collectively, TFT selectively inhibited the growth of TNBC by inducing chromosome instability and inhibiting thymidine synthase. Therefore, TFT may be valuable for the intervention of TNBC.
  • 机译 FBP1结合BRD4的溴结构域以抑制胰腺癌的进展
    摘要:Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumour that is characteristically unresponsive to most chemotherapeutic regimens. Bromodomain and extra terminal domain (BET) inhibitors that specifically repress the function of BET family proteins, such as BRD4, are under evaluation in clinical trials for their activity in repressing cancer growth. However, resistance to BET inhibitors has hindered their further clinical application in pancreatic cancer. We previously reported that FBP1 contributes to the resistance to BET inhibitors, but the underlying mechanism of this resistance remains unclear. Herein, we demonstrate that FBP1 is a binding partner of BRD4 in pancreatic cancer cells. We reveal that FBP1 binds to the BD2 domain of BD4 in an acetylation-dependent manner. Moreover, we found that Tip60 and HDAC3 were key to the acetylation and de-acetylation of FBP1 at K110 and K113, which are critical for mediating FBP1-BRD4 binding in pancreatic cancer cells. Furthermore, our data indicate that FBP1 decreases the expression of genes downstream of BRD4 to inhibit pancreatic cancer cell progression. Our results, therefore, provide evidence of the novel anti-tumour effect of FBP1 via its blockade of BRD4 function in pancreatic cancer cells.
  • 机译 曲妥珠单抗联合心脏照射可引起小鼠急性心脏毒性
    摘要:
  • 机译 Trifluoperazine通过依赖STAT3的溶酶体膜通透性延长实验性脑转移瘤的存活
    摘要:Brain metastasis is a major cause of mortality in melanoma patients. The blood-brain barrier (BBB) prevents most anti-tumor compounds from entering the brain, which significantly limits their use in the treatment of brain metastasis. One strategy in the development of new treatments is to assess the anti-tumor potential of drugs currently used in the clinic. Here, we tested the anti-tumor effect of the BBB-penetrating antipsychotic trifluoperazine (TFP) on metastatic melanoma. H1 and Melmet1 human metastatic melanoma cell lines were used in vitro and in vivo. TFP effects on viability and toxicity were evaluated in proliferation and colony formation assays. Preclinical, therapeutic efficacy was evaluated in NOD/SCID mice, after intracardial injection of tumor cells. Molecular studies using immunohistochemistry, western blots, immunofluorescence and transmission electron microscopy were used to gain mechanistic insight into the biological activity of TFP. Our results showed that TFP decreased cell viability and proliferation, colony formation and spheroid growth in vitro. The drug also decreased tumor burden in mouse brains and prolonged animal survival after injection of tumor cells (53.0 days vs 44.5 days), TFP treated vs untreated animals, respectively (P < 0.01). At the molecular level, TFP treatment led to increased levels of LC3B and p62 in vitro and in vivo, suggesting an inhibition of autophagic flux. A decrease in LysoTracker Red uptake after treatment indicated impaired acidification of lysosomes. TFP caused accumulation of electron dense vesicles, an indication of damaged lysosomes, and reduced the expression of cathepsin B, a main lysosomal protease. Acridine orange and galectin-3 immunofluorescence staining were evidence of TFP induction of lysosomal membrane permeabilization. Finally, TFP was cytotoxic to melanoma brain metastases based on the increased release of lactate dehydrogenase into media. Through knockdown experiments, the processes of TFP-induced lysosomal membrane permeabilization and cell death appeared to be STAT3 dependent. In conclusion, our work provides a strong rationale for further clinical investigation of TFP as an adjuvant therapy for melanoma patients with metastases to the brain.
  • 机译 抑制c-MET上调肺腺癌中PD-L1的表达
    摘要:Non-small cell lung cancer (NSCLC) patients with c-MET dysregulation may benefit from c-MET inhibitors therapy as inhibition of c-MET activity has emerged as a therapeutic approach against this disease. Although several c-MET inhibitors have been evaluated in multiple clinical trials in lung cancer, their benefits so far have been modest. Thus, furthering our understanding of the mechanisms contributing to the lack of success of c-MET inhibitors in clinical trials is essential toward the development of rational and effective combination strategies. Here we show that exposure of NCSLC cell lines to c-MET inhibitor tivantinib increases their expression of PD-L1, which in turn causes cells to become more resistant to T-cell killing. Mechanistically, inhibition of c-MET suppresses p-GSK3β, leading to the stabilization of PD-L1 similar to that observed in liver cancer cells. Collectively, our findings suggest a potential crosstalk between c-MET inhibition and immune escape and provide a rationale for the combination therapy of c-MET inhibitors and immune checkpoint blockade in NSCLC.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号