首页> 美国卫生研究院文献>Acta Crystallographica Section F: Structural Biology and Crystallization Communications >In vivo protein crystallization in combination with highly brilliant radiation sources offers novel opportunities for the structural analysis of post-translationally modified eukaryotic proteins
【2h】

In vivo protein crystallization in combination with highly brilliant radiation sources offers novel opportunities for the structural analysis of post-translationally modified eukaryotic proteins

机译:体内蛋白质结晶与高强度放射源的结合为翻译后修饰的真核蛋白质的结构分析提供了新的机会

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the last decade, the number of three-dimensional structures solved by X-ray crystallography has increased dramatically. By 2014, it had crossed the landmark of 100 000 biomolecular structures deposited in the Protein Data Bank. This tremendous increase in successfully crystallized proteins is primarily owing to improvements in cloning strategies, the automation of the crystallization process and new innovative approaches to monitor crystallization. However, these improvements are mainly restricted to soluble proteins, while the crystallization and structural analysis of membrane proteins or proteins that undergo major post-translational modifications remains challenging. In addition, the need for relatively large crystals for conventional X-ray crystallography usually prevents the analysis of dynamic processes within cells. Thus, the advent of high-brilliance synchrotron and X-ray free-electron laser (XFEL) sources and the establishment of serial crystallography (SFX) have opened new avenues in structural analysis using crystals that were formerly unusable. The successful structure elucidation of cathepsin B, accomplished by the use of microcrystals obtained by in vivo crystallization in baculovirus-infected Sf9 insect cells, clearly proved that crystals grown intracellularly are very well suited for X-ray analysis. Here, methods by which in vivo crystals can be obtained, isolated and used for structural analysis by novel highly brilliant XFEL and synchrotron-radiation sources are summarized and discussed.
机译:在过去的十年中,通过X射线晶体学解决的三维结构的数量急剧增加。到2014年,它已经突破了存储在蛋白质数据库中的100 000个生物分子结构的里程碑。成功结晶的蛋白质的巨大增加主要归因于克隆策略的改进,结晶过程的自动化以及监测结晶的新的创新方法。然而,这些改进主要限于可溶性蛋白,而膜蛋白或经历主要翻译后修饰的蛋白的结晶和结构分析仍然具有挑战性。另外,对于常规的X射线晶体学来说,相对较大的晶体的需求通常阻止了细胞内动态过程的分析。因此,高亮度同步加速器和X射线自由电子激光(XFEL)光源的出现以及串行晶体学(SFX)的建立为使用以前无法使用的晶体的结构分析开辟了新途径。组织蛋白酶B的成功结构阐明,通过使用在杆状病毒感染的Sf9昆虫细胞中体内结晶获得的微晶而完成,清楚地证明了细胞内生长的晶体非常适合X射线分析。在这里,总结和讨论了通过新颖的高亮度XFEL和同步辐射源获得,分离体内晶体并将其用于结构分析的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号