首页> 美国卫生研究院文献>ACS AuthorChoice >Surface Modification of Melt Extruded Poly(ε-caprolactone)Nanofibers: Toward a New Scalable Biomaterial Scaffold
【2h】

Surface Modification of Melt Extruded Poly(ε-caprolactone)Nanofibers: Toward a New Scalable Biomaterial Scaffold

机译:熔融挤出聚ε-己内酯的表面改性纳米纤维:走向新的可扩展的生物材料支架。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A photochemical modification of melt-extruded polymeric nanofibers is described. A bioorthogonal functional group is used to decorate fibers made exclusively from commodity polymers, covalently attach fluorophores and peptides, and direct cell growth. Our process begins by using a layered coextrusion method, where poly(ε-caprolactone) (PCL) nanofibers are incorporated within a macroscopic poly(ethylene oxide) (PEO) tape through a series of die multipliers within the extrusion line. The PEO layer is then removed with a water wash to yield rectangular PCL nanofibers with controlled cross-sectional dimensions. The fibers can be subsequently modified using photochemistry to yield a “clickable” handle for performing the copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction on their surface. We have attached fluorophores, which exhibit dense surface coverage when using ligand-accelerated CuAAC reaction conditions. In addition, an RGD peptide motif was coupled to the surface of the fibers. Subsequent cell-based studies have shown that the RGD peptide is biologically accessible at the surface, leadingto increased cellular adhesion and spreading versus PCL control surfaces.This functionalized coextruded fiber has the advantages of modularityand scalability, opening a potentially new avenue for biomaterialsfabrication.
机译:描述了熔融挤出的聚合物纳米纤维的光化学改性。生物正交官能团用于修饰仅由商品聚合物制成的纤维,共价连接荧光团和肽,并指导细胞生长。我们的过程始于分层共挤出方法,其中,聚(ε-己内酯)(PCL)纳米纤维通过挤出生产线中的一系列模头倍增器被引入到宏观聚环氧乙烷(PEO)胶带中。然后用水洗去除PEO层,以产生具有受控横截面尺寸的矩形PCL纳米纤维。随后可以使用光化学对纤维进行修饰,以产生“可点击”的手柄,以在其表面上进行铜催化的叠氮化物-炔烃环加成(CuAAC)反应。我们已连接了荧光团,当使用配体加速的CuAAC反应条件时,荧光团表现出密集的表面覆盖。另外,RGD肽基序与纤维表面偶联。随后的基于细胞的研究表明,RGD肽在表面上具有生物可及性,导致与PCL对照表面相比,可增加细胞粘附和扩散。这种功能化的共挤出纤维具有模块化的优势和可扩展性,为生物材料开辟了潜在的新途径制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号