首页> 美国卫生研究院文献>ACS AuthorChoice >FoldingSimulations for Proteins with Diverse TopologiesAre Accessible in Days with a Physics-Based Force Field and ImplicitSolvent
【2h】

FoldingSimulations for Proteins with Diverse TopologiesAre Accessible in Days with a Physics-Based Force Field and ImplicitSolvent

机译:折叠式具有多种拓扑结构的蛋白质模拟在几天内可访问基于物理的力场和隐式溶剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The millisecond time scale needed for molecular dynamics simulations to approach the quantitative study of protein folding is not yet routine. One approach to extend the simulation time scale is to perform long simulations on specialized and expensive supercomputers such as Anton. Ideally, however, folding simulations would be more economical while retaining reasonable accuracy, and provide feedback on structure, stability and function rapidly enough if partnered directly with experiment. Approaches to this problem typically involve varied compromises between accuracy, precision, and cost; the goal here is to address whether simple implicit solvent models have become sufficiently accurate for their weaknesses to be offset by their ability to rapidly provide much more precise conformational data as compared to explicit solvent. We demonstrate that our recently developed physics-based model performs well on this challenge, enabling accurate all-atom simulated folding for 16 of 17 proteins with a variety of sizes, secondary structure, and topologies. The simulations were carried out using the Amber softwareon inexpensive GPUs, providing ∼1 μs/day per GPU, and>2.5 ms data presented here. We also show that native conformationsare preferred over misfolded structures for 14 of the 17 proteins.For the other 3, misfolded structures are thermodynamically preferred,suggesting opportunities for further improvement.
机译:分子动力学模拟进行蛋白质折叠定量研究所需的毫秒级时间尺度还不是常规的。延长仿真时间范围的一种方法是在专用且昂贵的超级计算机(例如Anton)上执行长时间的仿真。但是,理想情况下,折叠模拟将更经济,同时保持合理的准确性,并且如果直接与实验配合,则可以足够迅速地提供有关结构,稳定性和功能的反馈。解决此问题的方法通常涉及准确性,精度和成本之间的各种折衷;这里的目标是要解决简单的隐式溶剂模型是否已经变得足够精确,以使其弱点可以被其与显式溶剂相比迅速提供更为精确的构象数据的能力所抵消。我们证明了我们最近开发的基于物理学的模型可以很好地应对这一挑战,可以对17种蛋白质中的16种进行精确的全原子模拟折叠,这些蛋白质具有各种大小,二级结构和拓扑。使用Amber软件进行了仿真在价格便宜的GPU上,每个GPU每天提供〜1μs/天,并且此处显示的数据> 2.5 ms。我们还显示了天然构象对于17种蛋白质中的14种而言,与错折叠结构相比,其更优选。对于其他3种,错折的结构在热力学上是优选的,提供进一步改进的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号