首页> 美国卫生研究院文献>ACS AuthorChoice >RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers
【2h】

RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers

机译:N-(2-(甲基丙烯酰氧基氧基)乙基)吡咯烷酮的RAFT水性分散聚合:通往高分子量水溶性共聚物的便捷低粘度途径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

RAFT solution polymerization of N-(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA63–PNMEPx diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in Mn with increasing PNMEP DP. A gradual increase in Mw/Mn was also observed when targeting higher DPs. However, this problem could be minimized (Mw/Mn < 1.50) by utilizing a higher purity grade of NMEP (98% vs 96%). This suggests that the broader molecular weight distributions observed at higher DPs are simply the result of a dimethacrylateimpurity causing light branching, rather than an intrinsic side reactionsuch as chain transfer to polymer. Kinetic studies confirmed thatthe RAFT aqueous dispersion polymerization of NMEP was approximatelyfour times faster than the RAFT solution polymerization of NMEP in ethanolwhen targeting the same DP in each case. This is perhaps surprisingbecause both 1H NMR and SAXS studies indicate that thecore-forming PNMEP chains remain relatively solvated at 70 °Cin the latter formulation. Moreover, dissolution of the initial PGMA63–PNMEPx particles occurson cooling from 70 to 20 °C as the PNMEP block passes throughits LCST. Hence this RAFT aqueous dispersion polymerization formulationoffers an efficient route to a high molecular weight water-solublepolymer in a rather convenient low-viscosity form. Finally, the relativelyexpensive PGMA macro-CTA was replaced with a poly(methacrylic acid)(PMAA) macro-CTA. High conversions were also achieved for PMAA85–PNMEPx diblock copolymersprepared via RAFT aqueous dispersion polymerization for x ≤ 4000. Again, better control was achieved when using the98% purity NMEP monomer in such syntheses.
机译:N-(2-(甲基丙烯酰氧基)乙基)吡咯烷酮(NMEP)在乙醇中的RAFT溶液聚合在70°C下进行,以生产一系列PNMEP均聚物,平均聚合度(DP)为31至467。使用比浊法以评估其在稀水溶液中的逆温度溶解性行为,在高分子量限制下观察到的LCST约为55°C。然后,使用RAFT水性分散聚合配方在70°C下用NMEP对平均DP为63的聚(单甲基丙烯酸甘油酯)(PGMA)大分子CTA进行扩链。目标PNMEP DP的范围从100到6000,系统地变化,以生成一系列PGMA63-PNMEPx二嵌段共聚物。靶向x = 5000时,可以实现高转化率(≥92%)。GPC分析证实,随着PNMEP DP的增加,Mn的阻断效率高,并且Mn呈线性变化。当靶向更高的DP时,还观察到Mw / Mn的逐渐增加。但是,通过使用更高纯度的NMEP(98%对96%),可以最小化此问题(Mw / Mn <1.50)。这表明在较高的DP下观察到的较宽的分子量分布仅是二甲基丙烯酸酯的结果引起轻分支的杂质,而不是固有的副反应例如链转移到聚合物上。动力学研究证实NMEP的RAFT水分散聚合约为比NMEP在乙醇中的RAFT溶液聚合快四倍在每种情况下以相同的DP为目标时。这也许令人惊讶因为 1 H NMR和SAXS研究均表明形成核的PNMEP链在70°C时仍保持相对溶剂化在后一种公式中。此外,最初的PGMA63–PNMEPx颗粒会发生溶解在PNMEP块通过时从70至20°C冷却其LCST。因此,该RAFT水分散聚合配方提供了获得高分子量水溶性的有效途径聚合物以相当方便的低粘度形式存在。最后,相对昂贵的PGMA macro-CTA被聚甲基丙烯酸取代(PMAA)宏CTA。 PMAA85–PNMEPx二嵌段共聚物也实现了高转化率通过RAFT水分散聚合制备的x≤4000。同样,当使用在这种合成中纯度为98%的NMEP单体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号