首页> 美国卫生研究院文献>ACS AuthorChoice >Determining the Effective Density and Stabilizer LayerThickness of Sterically Stabilized Nanoparticles
【2h】

Determining the Effective Density and Stabilizer LayerThickness of Sterically Stabilized Nanoparticles

机译:确定有效的密度和稳定剂层立体稳定纳米颗粒的厚度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], whichwas selected for its relatively high density. The hydrophilic stabilizerblock was poly(glycerol monomethacrylate) [PGMA], which is a well-knownnon-ionic polymer that remains water-soluble over a wide range oftemperatures. Four series of PGMAx–PTFEMAy nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100–1400) andcharacterized via transmission electron microscopy (TEM), dynamiclight scattering (DLS), and small-angle X-ray scattering (SAXS). Itwas found that the degree of polymerization of both the PGMA stabilizerand core-forming PTFEMA had a strong influence on the mean particlediameter, which ranged from 20 to 250 nm. Furthermore, SAXS was usedto determine radii of gyration of 1.46 to 2.69 nm for the solvatedPGMA stabilizer blocks. Thus, the mean effective density of thesesterically stabilized particles was calculated and determined to liebetween 1.19 g cm–3 for the smaller particles and1.41 g cm–3 for the larger particles; these valuesare significantly lower than the solid-state density of PTFEMA (1.47g cm–3). Since analytical centrifugation requiresthe density difference between the particles andthe aqueous phase, determining the effective particle density is clearlyvital for obtaining reliable particle size distributions. Furthermore,selected DCP data were recalculated by taking into account the inherentdensity distribution superimposed on the particlesize distribution. Consequently, the true particle size distributionswere found to be somewhat narrower than those calculated using anerroneous single density value, with smaller particles being particularlysensitive to this artifact.
机译:为了确定两个关键参数,已设计了一系列模型空间稳定的二嵌段共聚物纳米颗粒,以协助分析方案的发展:有效的颗粒密度和空间稳定剂层的厚度。前一个参数对于基于分析性(超)离心技术(例如,圆盘离心光沉降法,DCP)的高分辨率粒度分析至关重要,而后一个参数对于确定空间稳定作为胶体稳定机制的有效性至关重要。使用RAFT水性乳液聚合反应通过聚合诱导自组装(PISA)制备二嵌段共聚物纳米颗粒:这种方法提供了相对窄的粒度分布,并且可以通过系统变化来独立地调节平均粒径和稳定剂层厚度。疏水和亲水嵌段的平均聚合度。疏水性核形成嵌段是聚(2,2,2-三氟甲基丙烯酸甲酯)[PTFEMA],选择它是因为它具有较高的密度。亲水稳定剂嵌段是聚(单甲基丙烯酸甘油酯)[PGMA],这是众所周知的非离子型聚合物,可在很大范围内保持水溶性温度。制备了四个系列的PGMAx–PTFEMAy纳米颗粒(x = 28、43、63和98,y = 100–1400),并且通过透射电子显微镜(TEM)表征,动态光散射(DLS)和小角度X射线散射(SAXS)。它发现两种PGMA稳定剂的聚合度并且成核的PTFEMA对平均颗粒的影响很大直径范围从20到250 nm。此外,使用了SAXS确定溶剂化的1.46至2.69 nm的回转半径PGMA稳定器块。因此,这些的平均有效密度计算出空间稳定颗粒并确定其位于对于较小的颗粒,在1.19 g cm –3 之间较大的颗粒为1.41 g cm –3 ;这些价值观明显低于PTFEMA(1.47g cm –3 )。由于分析离心需要颗粒之间的密度差和水相,确定有效颗粒密度是很明显的对于获得可靠的粒度分布至关重要。此外,选定的DCP数据通过考虑固有因素重新计算密度分布叠加在粒子上大小分布。因此,真实的粒径分布被发现比使用错误的单一密度值,尤其是较小的颗粒对此工件敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号