首页> 美国卫生研究院文献>ACS AuthorChoice >Materials Genome in Action: Identifying the PerformanceLimits of Physical Hydrogen Storage
【2h】

Materials Genome in Action: Identifying the PerformanceLimits of Physical Hydrogen Storage

机译:实际中的材料基因组:识别性能物理氢存储的限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compressionat 700 bar.
机译:材料基因组正在发挥作用:已经对数百万种材料的分子代码进行了测序,已经开发了预测模型,现在针对储氢的挑战成为了目标。可再生能源产生的氢气是一种有吸引力的交通燃料,碳排放量为零,但其存储仍然是一个巨大的挑战。纳米多孔吸附剂显示出有希望的接近目标容量的氢物理吸附,但是研究范围仍然有限。在这里,使用多种计算工具分析了包含850-000种材料的纳米多孔材料基因组,以探索氢存储的极限。使室温下的净容量最大化的最佳功能包括约6Å的孔径和0.1的空隙率,而在低温下,最理想的孔径为10Å的孔径和0.5的空隙率是最佳的。我们发现,作为“低温吸附剂”,我们的顶级候选产品在商业上具有吸引力,其在77 K和100 bar的压力下具有可观的存储容量,可将40 g / L提高30%,是在20 K下液化和压缩的一种有前途的替代品在700巴。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号