首页> 美国卫生研究院文献>ACS AuthorChoice >SurfaceChemistry of Perovskite-Type Electrodes During High Temperature CO2 Electrolysis Investigated by Operando PhotoelectronSpectroscopy
【2h】

SurfaceChemistry of Perovskite-Type Electrodes During High Temperature CO2 Electrolysis Investigated by Operando PhotoelectronSpectroscopy

机译:表面Operando光电子研究钙钛矿型电极在高温CO2电解过程中的化学性质光谱学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example, via power to fuel processes. In this respect electrochemical reduction of CO2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, and move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g., by H2) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO3−δ and (La,Sr)CrO3−δ based perovskite-type electrodeswas studied during electrochemical CO2 reduction by meansof near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS)at SOEC operating temperatures. These measurements revealed the formationof a carbonate intermediate, which develops on the oxide surface onlyupon cathodic polarization (i.e., under sufficiently reducing conditions).The amount of this adsorbate increases with increasing oxygen vacancyconcentration of the electrode material, thus suggesting vacant oxygenlattice sites as the predominant adsorption sites for carbon dioxide.The correlation of carbonate coverage and cathodic polarization indicatesthat an electron transfer is required to form the carbonate and thusto activate CO2 on the oxide surface. The results alsosuggest that acceptor doped oxides with high electron concentrationand high oxygen vacancy concentration may be particularly suited forCO2 reduction. In contrast to water splitting, the CO2 electrolysis reaction was not significantly affected by metallicparticles, which were exsolved from the perovskite electrodes uponcathodic polarization. Carbon formation on the electrode surface wasonly observed under very strong cathodic conditions, and the carboncould be easily removed by retracting the applied voltage withoutdamaging the electrode, which is particularly promising from an applicationpoint of view.
机译:能源从化石燃料到可再生资源的任何实质性转移都需要大规模存储多余的能量,例如通过电力到燃料的过程。在这方面,CO 2的电化学还原可能变得非常重要,因为它提供了可持续生产CO的方法,这是合成可持续燃料的关键前提。固体氧化物电解槽(SOEC)中的二氧化碳减少由于其较高的工作温度而特别有希望,因为这可以改善热力学和快速动力学。此外,与在氧化物催化剂上形成纯化学CO相比,SOEC具有显着的优势,即催化活性氧空位在对电极处连续形成,并移至工作电极,在此无需重新化学作用即可重新活化氧化物表面(例如,通过H2)或热还原步骤。在目前的工作中,(La,Sr)FeO3-δ和(La,Sr)CrO3-δ钙钛矿型电极的表面化学通过以下方法研究了电化学还原二氧化碳的过程压力X射线光电子能谱(NAP-XPS)的合成在SOEC工作温度下。这些测量揭示了形成碳酸盐中间体,仅在氧化物表面上形成在阴极极化时(即在充分还原的条件下)。该吸附物的量随着氧空位的增加而增加电极材料的浓度,因此暗示有空氧晶格位点是二氧化碳的主要吸附位点。碳酸盐覆盖率与阴极极化的相关性表明需要电子转移才能形成碳酸盐,因此激活氧化物表面上的二氧化碳。结果也表明受主掺杂的氧化物具有高电子浓度高氧气空位浓度可能特别适合减少二氧化碳。与水分解相比,CO2电解反应不受金属的显着影响从钙钛矿电极上溶解出来的颗粒阴极极化。电极表面的碳形成为仅在非常强的阴极条件下观察到可以通过撤回施加的电压轻松移除,而无需损坏电极,这在应用中特别有希望观点看法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号