首页> 美国卫生研究院文献>ACS AuthorChoice >Mechanistic Complexity of Methane Oxidation with H2O2 by Single-Site Fe/ZSM-5 Catalyst
【2h】

Mechanistic Complexity of Methane Oxidation with H2O2 by Single-Site Fe/ZSM-5 Catalyst

机译:单点Fe / ZSM-5催化剂甲烷氧化为H2O2的机理复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Periodic density functional theory (DFT) calculations were carried out to investigate the mechanism of methane oxidation with H2O2 over the defined Fe sites in Fe/ZSM-5 zeolite. The initial Fe site is modeled as a [(H2O)2–Fe(III)–(μO)2–Fe(III)–(H2O)2]2+ extraframework cluster deposited in the zeolite pore and charge-compensated by two anionic lattice sites. The activation of this cluster with H2O2 gives rise to the formation of a variety of Fe(III)-oxo and Fe(IV)-oxo complexes potentially reactive toward methane dissociation. These sites are all able to promote the first C–H bond cleavage in methane by following three possible reaction mechanisms: namely, (a) heterolytic and (b) homolytic methane dissociation as well as (c) Fenton-type reaction involving free OH radicals as the catalytic species. The C–H activation step is followed by formation of MeOH and MeOOH and regeneration of the active site. The Fenton-type path is found to proceed with the lowest activation barrier. Although the barriers for the alternative heterolytic and homolytic pathways are found to be somewhat higher, they are still quite favorable and are expected to be feasible under reaction conditions,resulting ultimately in MeOH and MeOOH products. H2O2 oxidant competes with CH4 substrate for the samesites. Since the oxidation of H2O2 to O2 and two [H+] is energetically more favorable thanthe C–H oxofunctionalization, the overall efficiency of thelatter target process remains low.
机译:进行了周期性密度泛函理论(DFT)计算,以研究在Fe / ZSM-5沸石中定义的Fe位上H2O2氧化甲烷的机理。 Fe的初始位点建模为[(H2O)2-Fe(III)-(μO)2-Fe(III)-(H2O)2] 2 + 沉积在沸石孔中的骨架外簇和电荷被两个阴离子晶格位点补偿。用H2O2活化该簇导致形成各种可能对甲烷解离反应的Fe(III)-氧代和Fe(IV)-氧代配合物。这些位点均能够通过以下三种可能的反应机理促进甲烷中的第一个C–H键裂解:即(a)杂解和(b)甲烷均解离以及(c)涉及游离OH自由基的Fenton型反应作为催化物质。在C–H活化步骤之后,形成MeOH和MeOOH,并再生活性位点。发现芬顿型路径以最低的激活势垒进行。尽管发现杂化和杂化途径的障碍较高,但它们仍然非常有利,并有望在反应条件下可行。最终产生MeOH和MeOOH产物。 H2O2氧化剂与CH4底物竞争相同的网站。由于H2O2氧化为O2和两个[H + ]在能量上比C–H羰基化,整体效率后一个目标过程仍然很低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号