首页> 中文期刊> 《中国科学》 >Phototoxic effect of UVR on wild type, ebony and yellow mutants of Drosophila melanogaster: Life Span, fertility, courtship and biochemical aspects

Phototoxic effect of UVR on wild type, ebony and yellow mutants of Drosophila melanogaster: Life Span, fertility, courtship and biochemical aspects

         

摘要

Melanin plays an important role in protecting organisms from ultraviolet radiation (UVR). Therefore, it is possible that differently colored strains can show different sensitivities to UVR. In the present work, life span, fertility and courtship behavior of wild type (w), ebony (e) and yellow (y) strains of Drosophila melanogaster were studied to evaluate their sensitivity to ultraviolet (UV). Because a range of photo- toxic effects of UVR are mediated through generation of free radicals, levels of free radicals, lipid per- oxide (malondialdehyde, MDA) and superoxide dismutase (SOD) activity of three strains were examined to indicate their antioxidant defending ability and oxidative status. It was shown that w always had the highest lifespan and fertility not only in the control but also in UV-exposed groups. Moreover, lifespan and fertility of e were significantly higher (P0.0001) than those of y in the UV-exposed groups, but not for the control. On the other hand, UV exposure had an adverse effect on courtship of flies. Stronger electron paramagnetic resonance (EPR) signals could be detected in w, e and y exposed to 5 min UV. And there were more significant changes of EPR signals in y than in w and e. UVR had no significant (P=0.1782) effect on the SOD activities. After pooling data from the control and UV-exposed groups, we found that w had a significantly (P0.05) higher level of SOD activity, but e and y were nearly at the same levels (P0.05). MDA levels were increased in the UV dose-dependent manner (P=0.0495). In con- clusion, our results suggested that UVR can decrease life span and fertility of flies and do harm to courtship, which may be due to oxidative damage to flies tissues (e.g. central nervous system) induced by free radicals. w had the highest tolerance to UVR, which may be ascribed to its advantage of survival under the natural condition and at high level of SOD activity. Then differences of pigment between e and y in absorbing UV, shielding against UV and scavenging free radicals produced by UVR should be responsible for their different sensitivity to UVR.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号