首页> 中文期刊> 《天文和天体物理学研究:英文版》 >Hydrodynamical simulations of the triggering of nuclear activities by minor mergers of galaxies

Hydrodynamical simulations of the triggering of nuclear activities by minor mergers of galaxies

         

摘要

Major mergers of galaxies are considered to be an efficient way to trigger Active Galactic Nuclei and are thought to be responsible for the phenomenon of quasars. This has however recently been challenged by observations of a large number of low luminosity Active Galactic Nuclei at low redshift(z■1) without obvious major merger signatures. Minor mergers are frequently proposed to explain the existence of these Active Galactic Nuclei. In this paper, we perform nine high resolution hydrodynamical simulations of minor galaxy mergers, and investigate whether nuclear activities can be efficiently triggered by minor mergers, by setting various properties for the progenitor galaxies of those mergers. We find that minor galaxy mergers can activate the massive black hole in the primary galaxy with an Eddington ratio of f Edd > 0.01 and> 0.05(or a bolometric luminosity > 10^43 and > 10^44 erg s^-1) with a duration of 2.71 and 0.49 Gyr(or 2.69 and 0.19 Gyr), respectively. The nuclear activity of the primary galaxy strongly depends on the nucleus separation, such that the nucleus is more active as the two nuclei approach each other. Dual Active Galactic Nuclei systems can still possibly be formed by minor mergers of galaxies, though the time duration for dual Active Galactic Nuclei is only ~ 0.011 Gyr and ~ 0.017 Gyr with Eddington ratio of f Edd > 0.05 and bolometric luminosity > 10^44 erg s^-1. This time period is typically shorter than that of dual Active Galactic Nuclei induced by major galaxy mergers.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号